The PHREG Procedure

References

  • Andersen, P. K., Borgan, O., Gill, R. D., and Keiding, N. (1992). Statistical Models Based on Counting Processes. New York: Springer-Verlag.

  • Andersen, P. K., and Gill, R. D. (1982). “Cox’s Regression Model Counting Process: A Large Sample Study.” Annals of Statistics 10:1100–1120.

  • Binder, D. A. (1992). “Fitting Cox’s Proportional Hazards Models from Survey Data.” Biometrika 79:139–147.

  • Borgan, Ø., and Liestøl, K. (1990). “A Note on Confidence Interval and Bands for the Survival Curves Based on Transformations.” Scandinavian Journal of Statistics 18:35–41.

  • Breslow, N. E. (1972). “Discussion of Professor Cox’s Paper.” Journal of the Royal Statistical Society, Series B 34:216–217.

  • Breslow, N. E. (1974). “Covariance Analysis of Censored Survival Data.” Biometrics 30:89–99.

  • Breslow, N. E., and Clayton, D. G. (1993). “Approximate Inference in Generalized Linear Mixed Models.” Journal of the American Statistical Association 88:9–25.

  • Bryson, M. C., and Johnson, M. E. (1981). “The Incidence of Monotone Likelihood in the Cox Model.” Technometrics 23:381–383.

  • Cain, K. C., and Lange, N. T. (1984). “Approximate Case Influence for the Proportional Hazards Regression Model with Censored Data.” Biometrics 40:493–499.

  • Cox, D. R. (1972). “Regression Models and Life Tables.” Journal of the Royal Statistical Society, Series B 20:187–220. With discussion.

  • Cox, D. R. (1975). “Partial Likelihood.” Biometrika 62:269–276.

  • Crowley, J., and Hu, M. (1977). “Covariance Analysis of Heart Transplant Survival Data.” Journal of the American Statistical Association 72:27–36.

  • DeLong, D. M., Guirguis, G. H., and So, Y. C. (1994). “Efficient Computation of Subset Selection Probabilities with Application to Cox Regression.” Biometrika 81:607–611.

  • Efron, B. (1977). “The Efficiency of Cox’s Likelihood Function for Censored Data.” Journal of the American Statistical Association 72:557–565.

  • Fine, J. P., and Gray, R. J. (1999). “A Proportional Hazards Model for the Subdistribution of a Competing Risk.” Journal of the American Statistical Association 94:496–509.

  • Firth, D. (1993). “Bias Reduction of Maximum Likelihood Estimates.” Biometrika 80:27–38.

  • Fleming, T. R., and Harrington, D. P. (1984). “Nonparametric Estimation of the Survival Distribution in Censored Data.” Communications in Statistics—Theory and Methods 13:2469–2486.

  • Fleming, T. R., and Harrington, D. P. (1991). Counting Processes and Survival Analysis. New York: John Wiley & Sons.

  • Furnival, G. M., and Wilson, R. W. (1974). “Regression by Leaps and Bounds.” Technometrics 16:499–511.

  • Gail, M. H., and Byar, D. P. (1986). “Variance Calculations for Direct Adjusted Survival Curves, with Applications to Testing for No Treatment Effect.” Biometrical Journal 28:587–599.

  • Gail, M. H., Lubin, J. H., and Rubinstein, L. V. (1981). “Likelihood Calculations for Matched Case-Control Studies and Survival Studies with Tied Death Times.” Biometrika 68:703–707.

  • Gilks, W. R., Best, N. G., and Tan, K. K. C. (1995). “Adaptive Rejection Metropolis Sampling within Gibbs Sampling.” Journal of the Royal Statistical Society, Series C 44:455–472.

  • Grambsch, P. M., and Therneau, T. M. (1994). “Proportional Hazards Tests and Diagnostics Based on Weighted Residuals.” Biometrika 81:515–526.

  • Gray, R. J. (1992). “Flexible Method for Analyzing Survival Data Using Splines, with Applications to Breast Cancer Prognosis.” Journal of the American Statistical Association 87:942–951.

  • Harrell, F. E. (1986). “The PHGLM Procedure.” In SUGI Supplemental Library Guide, Version 5 Edition. Cary, NC: SAS Institute Inc.

  • Heinze, G. (1999). The Application of Firth’s Procedure to Cox and Logistic Regression. Technical Report 10, updated January 2001, Department of Medical Computer Sciences, Section of Clinical Biometrics, University of Vienna.

  • Heinze, G., and Schemper, M. (2001). “A Solution to the Problem of Monotone Likelihood in Cox Regression.” Biometrics 51:114–119.

  • Hosmer, D. W., Jr., and Lemeshow, S. (1989). Applied Logistic Regression. New York: John Wiley & Sons.

  • Ibrahim, J. G., Chen, M.-H., and Sinha, D. (2001). Bayesian Survival Analysis. New York: Springer-Verlag.

  • Kalbfleisch, J. D., and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. New York: John Wiley & Sons.

  • Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998). “Markov Chain Monte Carlo in Practice: A Roundtable Discussion.” American Statistician 52:93–100.

  • Klein, J. P., and Moeschberger, M. L. (1997). Survival Analysis: Techniques for Censored and Truncated Data. New York: Springer-Verlag.

  • Klein, J. P., and Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored and Truncated Data. 2nd ed. New York: Springer-Verlag.

  • Krall, J. M., Uthoff, V. A., and Harley, J. B. (1975). “A Step-Up Procedure for Selecting Variables Associated with Survival.” Biometrics 31:49–57.

  • Lawless, J. F. (2003). Statistical Model and Methods for Lifetime Data. 2nd ed. New York: John Wiley & Sons.

  • Lawless, J. F., and Nadeau, C. (1995). “Some Simple Robust Methods for the Analysis of Recurrent Events.” Technometrics 37:158–168.

  • Lee, E. W., Wei, L. J., and Amato, D. A. (1992). “Cox-Type Regression Analysis for Large Numbers of Small Groups of Correlated Failure Time Observations.” In Survival Analysis: State of the Art, edited by J. P. Klein, and P. K. Goel, 237–247. Dordrecht, Netherlands: Kluwer Academic.

  • Lin, D. Y. (1994). “Cox Regression Analysis of Multivariate Failure Time Data: The Marginal Approach.” Statistics in Medicine 13:2233–2247.

  • Lin, D. Y., and Wei, L. J. (1989). “The Robust Inference for the Proportional Hazards Model.” Journal of the American Statistical Association 84:1074–1078.

  • Lin, D. Y., Wei, L. J., Yang, I., and Ying, Z. (2000). “Semiparametric Regression for the Mean and Rate Functions of Recurrent Events.” Journal of the Royal Statistical Society, Series B 62:711–730.

  • Lin, D. Y., Wei, L. J., and Ying, Z. (1993). “Checking the Cox Model with Cumulative Sums of Martingale-Based Residuals.” Biometrika 80:557–572.

  • Littell, R. C., Freund, R. J., and Spector, P. C. (1991). SAS System for Linear Models. 3rd ed. Cary, NC: SAS Institute Inc.

  • Makuch, R. W. (1982). “Adjusted Survival Curve Estimation Using Covariates.” Journal of Chronic Diseases 35:437–443.

  • Muller, K. E., and Fetterman, B. A. (2002). Regression and ANOVA: An Integrated Approach Using SAS Software. Cary, NC: SAS Institute Inc.

  • Nelson, W. (2002). Recurrent Events Data Analysis for Product Repairs, Disease Recurrences, and Other Applications. Philadelphia: Society for Industrial and Applied Mathematics.

  • Neuberger, J., Altman, D. G., Christensen, E., Tygstrup, N., and Williams, R. (1986). “Use of a Prognostic Index in Evaluation of Liver Transplantation for Primary Biliary Cirrhosis.” Transplantation 41:713–716.

  • Pepe, M. S., and Cai, J. (1993). “Some Graphical Displays and Marginal Regression Analyses for Recurrent Failure Times and Time Dependent Covariates.” Journal of the American Statistical Association 88:811–820.

  • Pettitt, A. N., and Bin Daud, I. (1989). “Case-Weighted Measures of Influence for Proportional Hazards Regression.” Journal of the Royal Statistical Society, Series C 38:313–329.

  • Prentice, R. L., Williams, B. J., and Peterson, A. V. (1981). “On the Regression Analysis of Multivariate Failure Time Data.” Biometrika 68:373–379.

  • Reid, N., and Crépeau, H. (1985). “Influence Functions for Proportional Hazards Regression.” Biometrika 72:1–9.

  • Ripatti, S., and Palmgren, J. (2000). “Estimation of Multivariate Frailty Models Using Penalized Partial Likelihood.” Biometrics 56:1016–1022.

  • Sargent, D. J. (1998). “A General Framework for Random Effects Survival Analysis in the Cox Proportional Hazards Setting.” Biometrics 54:1486–1497.

  • Schemper, M., and Henderson, R. (2000). “Predictive Accuracy and Explained Variation in Cox Regression.” Biometrics 56:249–255.

  • Schoenfeld, D. A. (1982). “Partial Residuals for the Proportional Hazards Regression Model.” Biometrika 69:239–241.

  • Simonsen, J. (2014). Statens Serum Institut, Copenhagen. Unpublished SAS macro.

  • Sinha, D., Ibrahim, J. G., and Chen, M.-H. (2003). “A Bayesian Justification of Cox’s Partial Likelihood.” Biometrika 90:629–641.

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van der Linde, A. (2002). “Bayesian Measures of Model Complexity and Fit.” Journal of the Royal Statistical Society, Series B 64:583–616. With discussion.

  • Spiekerman, C. F., and Lin, D. Y. (1998). “Marginal Regression Models for Multivariate Failure Time Data.” Journal of the American Statistical Association 93:1164–1175.

  • Therneau, T. M. (1994). A Package for Survival Analysis in S. Technical Report 53, Section of Biostatistics, Mayo Clinic, Rochester, MN.

  • Therneau, T. M., and Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model. New York: Springer-Verlag.

  • Therneau, T. M., Grambsch, P. M., and Fleming, T. R. (1990). “Martingale-Based Residuals and Survival Models.” Biometrika 77:147–160.

  • Tsiatis, A. A. (1981). “A Large Sample Study of the Estimates for the Integrated Hazard Function in Cox’s Regression Model for Survival Data.” Annals of Statistics 9:93–108.

  • Venzon, D. J., and Moolgavkar, S. H. (1988). “A Method for Computing Profile-Likelihood-Based Confidence Intervals.” Journal of the Royal Statistical Society, Series C 37:87–94.

  • Wei, L. J., Lin, D. Y., and Weissfeld, L. (1989). “Regression Analysis of Multivariate Incomplete Failure Time Data by Modeling Marginal Distribution.” Journal of the American Statistical Association 84:1065–1073.

  • Zhang, X., Loberiza, F. R., Klein, J. P., and Zhang, M. J. (2007). “A SAS Macro for Estimation of Direct Adjusted Survival Curves Based on a Stratified Cox Regression Model.” Computer Methods and Programs in Biomedicine 88:95–111.

  • Zhou, B., Fine, J., Latouche, A., and Labopin, M. (2012). “Competing Risks Regression for Cluster Data.” Biostatistics 13:371–383.

  • Zhou, B., Latouche, A., Rocha, V., and Fine, J. (2011). “Competing Risks Regression for Stratified Data.” Biometrics 67:661–670.