Andersen, P. K., Borgan, O., Gill, R. D., and Keiding, N. (1992). Statistical Models Based on Counting Processes. New York: Springer-Verlag.
Andersen, P. K., and Gill, R. D. (1982). “Cox’s Regression Model Counting Process: A Large Sample Study.” Annals of Statistics 10:1100–1120.
Binder, D. A. (1992). “Fitting Cox’s Proportional Hazards Models from Survey Data.” Biometrika 79:139–147.
Borgan, Ø., and Liestøl, K. (1990). “A Note on Confidence Interval and Bands for the Survival Curves Based on Transformations.” Scandinavian Journal of Statistics 18:35–41.
Breslow, N. E. (1972). “Discussion of Professor Cox’s Paper.” Journal of the Royal Statistical Society, Series B 34:216–217.
Breslow, N. E. (1974). “Covariance Analysis of Censored Survival Data.” Biometrics 30:89–99.
Breslow, N. E., and Clayton, D. G. (1993). “Approximate Inference in Generalized Linear Mixed Models.” Journal of the American Statistical Association 88:9–25.
Bryson, M. C., and Johnson, M. E. (1981). “The Incidence of Monotone Likelihood in the Cox Model.” Technometrics 23:381–383.
Cain, K. C., and Lange, N. T. (1984). “Approximate Case Influence for the Proportional Hazards Regression Model with Censored Data.” Biometrics 40:493–499.
Cox, D. R. (1972). “Regression Models and Life Tables.” Journal of the Royal Statistical Society, Series B 20:187–220. With discussion.
Cox, D. R. (1975). “Partial Likelihood.” Biometrika 62:269–276.
Crowley, J., and Hu, M. (1977). “Covariance Analysis of Heart Transplant Survival Data.” Journal of the American Statistical Association 72:27–36.
DeLong, D. M., Guirguis, G. H., and So, Y. C. (1994). “Efficient Computation of Subset Selection Probabilities with Application to Cox Regression.” Biometrika 81:607–611.
Efron, B. (1977). “The Efficiency of Cox’s Likelihood Function for Censored Data.” Journal of the American Statistical Association 72:557–565.
Fine, J. P., and Gray, R. J. (1999). “A Proportional Hazards Model for the Subdistribution of a Competing Risk.” Journal of the American Statistical Association 94:496–509.
Firth, D. (1993). “Bias Reduction of Maximum Likelihood Estimates.” Biometrika 80:27–38.
Fleming, T. R., and Harrington, D. P. (1984). “Nonparametric Estimation of the Survival Distribution in Censored Data.” Communications in Statistics—Theory and Methods 13:2469–2486.
Fleming, T. R., and Harrington, D. P. (1991). Counting Processes and Survival Analysis. New York: John Wiley & Sons.
Furnival, G. M., and Wilson, R. W. (1974). “Regression by Leaps and Bounds.” Technometrics 16:499–511.
Gail, M. H., and Byar, D. P. (1986). “Variance Calculations for Direct Adjusted Survival Curves, with Applications to Testing for No Treatment Effect.” Biometrical Journal 28:587–599.
Gail, M. H., Lubin, J. H., and Rubinstein, L. V. (1981). “Likelihood Calculations for Matched Case-Control Studies and Survival Studies with Tied Death Times.” Biometrika 68:703–707.
Gilks, W. R., Best, N. G., and Tan, K. K. C. (1995). “Adaptive Rejection Metropolis Sampling within Gibbs Sampling.” Journal of the Royal Statistical Society, Series C 44:455–472.
Grambsch, P. M., and Therneau, T. M. (1994). “Proportional Hazards Tests and Diagnostics Based on Weighted Residuals.” Biometrika 81:515–526.
Gray, R. J. (1992). “Flexible Method for Analyzing Survival Data Using Splines, with Applications to Breast Cancer Prognosis.” Journal of the American Statistical Association 87:942–951.
Harrell, F. E. (1986). “The PHGLM Procedure.” In SUGI Supplemental Library Guide, Version 5 Edition. Cary, NC: SAS Institute Inc.
Heinze, G. (1999). The Application of Firth’s Procedure to Cox and Logistic Regression. Technical Report 10, updated January 2001, Department of Medical Computer Sciences, Section of Clinical Biometrics, University of Vienna.
Heinze, G., and Schemper, M. (2001). “A Solution to the Problem of Monotone Likelihood in Cox Regression.” Biometrics 51:114–119.
Hosmer, D. W., Jr., and Lemeshow, S. (1989). Applied Logistic Regression. New York: John Wiley & Sons.
Ibrahim, J. G., Chen, M.-H., and Sinha, D. (2001). Bayesian Survival Analysis. New York: Springer-Verlag.
Kalbfleisch, J. D., and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. New York: John Wiley & Sons.
Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998). “Markov Chain Monte Carlo in Practice: A Roundtable Discussion.” American Statistician 52:93–100.
Klein, J. P., and Moeschberger, M. L. (1997). Survival Analysis: Techniques for Censored and Truncated Data. New York: Springer-Verlag.
Klein, J. P., and Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored and Truncated Data. 2nd ed. New York: Springer-Verlag.
Krall, J. M., Uthoff, V. A., and Harley, J. B. (1975). “A Step-Up Procedure for Selecting Variables Associated with Survival.” Biometrics 31:49–57.
Lawless, J. F. (2003). Statistical Model and Methods for Lifetime Data. 2nd ed. New York: John Wiley & Sons.
Lawless, J. F., and Nadeau, C. (1995). “Some Simple Robust Methods for the Analysis of Recurrent Events.” Technometrics 37:158–168.
Lee, E. W., Wei, L. J., and Amato, D. A. (1992). “Cox-Type Regression Analysis for Large Numbers of Small Groups of Correlated Failure Time Observations.” In Survival Analysis: State of the Art, edited by J. P. Klein, and P. K. Goel, 237–247. Dordrecht, Netherlands: Kluwer Academic.
Lin, D. Y. (1994). “Cox Regression Analysis of Multivariate Failure Time Data: The Marginal Approach.” Statistics in Medicine 13:2233–2247.
Lin, D. Y., and Wei, L. J. (1989). “The Robust Inference for the Proportional Hazards Model.” Journal of the American Statistical Association 84:1074–1078.
Lin, D. Y., Wei, L. J., Yang, I., and Ying, Z. (2000). “Semiparametric Regression for the Mean and Rate Functions of Recurrent Events.” Journal of the Royal Statistical Society, Series B 62:711–730.
Lin, D. Y., Wei, L. J., and Ying, Z. (1993). “Checking the Cox Model with Cumulative Sums of Martingale-Based Residuals.” Biometrika 80:557–572.
Littell, R. C., Freund, R. J., and Spector, P. C. (1991). SAS System for Linear Models. 3rd ed. Cary, NC: SAS Institute Inc.
Makuch, R. W. (1982). “Adjusted Survival Curve Estimation Using Covariates.” Journal of Chronic Diseases 35:437–443.
Muller, K. E., and Fetterman, B. A. (2002). Regression and ANOVA: An Integrated Approach Using SAS Software. Cary, NC: SAS Institute Inc.
Nelson, W. (2002). Recurrent Events Data Analysis for Product Repairs, Disease Recurrences, and Other Applications. Philadelphia: Society for Industrial and Applied Mathematics.
Neuberger, J., Altman, D. G., Christensen, E., Tygstrup, N., and Williams, R. (1986). “Use of a Prognostic Index in Evaluation of Liver Transplantation for Primary Biliary Cirrhosis.” Transplantation 41:713–716.
Pepe, M. S., and Cai, J. (1993). “Some Graphical Displays and Marginal Regression Analyses for Recurrent Failure Times and Time Dependent Covariates.” Journal of the American Statistical Association 88:811–820.
Pettitt, A. N., and Bin Daud, I. (1989). “Case-Weighted Measures of Influence for Proportional Hazards Regression.” Journal of the Royal Statistical Society, Series C 38:313–329.
Prentice, R. L., Williams, B. J., and Peterson, A. V. (1981). “On the Regression Analysis of Multivariate Failure Time Data.” Biometrika 68:373–379.
Reid, N., and Crépeau, H. (1985). “Influence Functions for Proportional Hazards Regression.” Biometrika 72:1–9.
Ripatti, S., and Palmgren, J. (2000). “Estimation of Multivariate Frailty Models Using Penalized Partial Likelihood.” Biometrics 56:1016–1022.
Sargent, D. J. (1998). “A General Framework for Random Effects Survival Analysis in the Cox Proportional Hazards Setting.” Biometrics 54:1486–1497.
Schemper, M., and Henderson, R. (2000). “Predictive Accuracy and Explained Variation in Cox Regression.” Biometrics 56:249–255.
Schoenfeld, D. A. (1982). “Partial Residuals for the Proportional Hazards Regression Model.” Biometrika 69:239–241.
Simonsen, J. (2014). Statens Serum Institut, Copenhagen. Unpublished SAS macro.
Sinha, D., Ibrahim, J. G., and Chen, M.-H. (2003). “A Bayesian Justification of Cox’s Partial Likelihood.” Biometrika 90:629–641.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van der Linde, A. (2002). “Bayesian Measures of Model Complexity and Fit.” Journal of the Royal Statistical Society, Series B 64:583–616. With discussion.
Spiekerman, C. F., and Lin, D. Y. (1998). “Marginal Regression Models for Multivariate Failure Time Data.” Journal of the American Statistical Association 93:1164–1175.
Therneau, T. M. (1994). A Package for Survival Analysis in S. Technical Report 53, Section of Biostatistics, Mayo Clinic, Rochester, MN.
Therneau, T. M., and Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model. New York: Springer-Verlag.
Therneau, T. M., Grambsch, P. M., and Fleming, T. R. (1990). “Martingale-Based Residuals and Survival Models.” Biometrika 77:147–160.
Tsiatis, A. A. (1981). “A Large Sample Study of the Estimates for the Integrated Hazard Function in Cox’s Regression Model for Survival Data.” Annals of Statistics 9:93–108.
Venzon, D. J., and Moolgavkar, S. H. (1988). “A Method for Computing Profile-Likelihood-Based Confidence Intervals.” Journal of the Royal Statistical Society, Series C 37:87–94.
Wei, L. J., Lin, D. Y., and Weissfeld, L. (1989). “Regression Analysis of Multivariate Incomplete Failure Time Data by Modeling Marginal Distribution.” Journal of the American Statistical Association 84:1065–1073.
Zhang, X., Loberiza, F. R., Klein, J. P., and Zhang, M. J. (2007). “A SAS Macro for Estimation of Direct Adjusted Survival Curves Based on a Stratified Cox Regression Model.” Computer Methods and Programs in Biomedicine 88:95–111.
Zhou, B., Fine, J., Latouche, A., and Labopin, M. (2012). “Competing Risks Regression for Cluster Data.” Biostatistics 13:371–383.
Zhou, B., Latouche, A., Rocha, V., and Fine, J. (2011). “Competing Risks Regression for Stratified Data.” Biometrics 67:661–670.