This example illustrates using a piecewise exponential model in a Bayesian analysis. Consider the Rats
data set in the section Getting Started: PHREG Procedure. In the following statements, PROC PHREG is used to carry out a Bayesian analysis for the piecewise exponential model. In
the BAYES statement, the option PIECEWISE stipulates a piecewise exponential model, and PIECEWISE=HAZARD requests that the
constant hazards be modeled in the original scale. By default, eight intervals of constant hazards are used, and the intervals
are chosen such that each has roughly the same number of events.
data Rats; label Days ='Days from Exposure to Death'; input Days Status Group @@; datalines; 143 1 0 164 1 0 188 1 0 188 1 0 190 1 0 192 1 0 206 1 0 209 1 0 213 1 0 216 1 0 220 1 0 227 1 0 230 1 0 234 1 0 246 1 0 265 1 0 304 1 0 216 0 0 244 0 0 142 1 1 156 1 1 163 1 1 198 1 1 205 1 1 232 1 1 232 1 1 233 1 1 233 1 1 233 1 1 233 1 1 239 1 1 240 1 1 261 1 1 280 1 1 280 1 1 296 1 1 296 1 1 323 1 1 204 0 1 344 0 1 ;
proc phreg data=Rats; model Days*Status(0)=Group; bayes seed=1 piecewise=hazard statistics=(summary interval) diagnostics=(autocorr geweke ess); run;
The "Model Information" table in Output 85.14.1 shows that the piecewise exponential model is being used.
Output 85.14.1: Model Information
By default the time axis is partitioned into eight intervals of constant hazard. Output 85.14.2 details the number of events and observations in each interval. Note that the constant hazard parameters are named Lambda1
,…, Lambda8
. You can supply your own partition by using the INTERVALS= suboption within the PIECEWISE=HAZARD option.
Output 85.14.2: Interval Partition
The model parameters consist of the eight hazard parameters Lambda1
, …, Lambda8
, and the regression coefficient Group
. The maximum likelihood estimates are displayed in Output 85.14.3. Again, these estimates are used as the starting values for simulation of the posterior distribution.
Output 85.14.3: Maximum Likelihood Estimates
Maximum Likelihood Estimates | |||||
---|---|---|---|---|---|
Parameter | DF | Estimate | Standard Error |
95% Confidence Limits | |
Lambda1 | 1 | 0.000953 | 0.000443 | 0.000084 | 0.00182 |
Lambda2 | 1 | 0.00794 | 0.00371 | 0.000672 | 0.0152 |
Lambda3 | 1 | 0.0156 | 0.00734 | 0.00120 | 0.0300 |
Lambda4 | 1 | 0.0236 | 0.0115 | 0.00112 | 0.0461 |
Lambda5 | 1 | 0.3669 | 0.1959 | 0 | 0.7509 |
Lambda6 | 1 | 0.0276 | 0.0148 | 0 | 0.0566 |
Lambda7 | 1 | 0.0262 | 0.0146 | 0 | 0.0548 |
Lambda8 | 1 | 0.0545 | 0.0310 | 0 | 0.1152 |
Group | 1 | -0.6223 | 0.3468 | -1.3020 | 0.0573 |
Without using the PRIOR= suboption within the PIECEWISE=HAZARD option to specify the prior of the hazard parameters, the default is to use the noninformative and improper prior displayed in Output 85.14.4.
Output 85.14.4: Hazard Prior
The noninformative uniform prior is used for the regression coefficient Group
(Output 85.14.5), as in the section Bayesian Analysis.
Output 85.14.5: Coefficient Prior
Summary statistics for all model parameters are shown in Output 85.14.6 and Output 85.14.7.
Output 85.14.6: Summary Statistics
Posterior Summaries | ||||||
---|---|---|---|---|---|---|
Parameter | N | Mean | Standard Deviation |
Percentiles | ||
25% | 50% | 75% | ||||
Lambda1 | 10000 | 0.000945 | 0.000444 | 0.000624 | 0.000876 | 0.00118 |
Lambda2 | 10000 | 0.00782 | 0.00363 | 0.00519 | 0.00724 | 0.00979 |
Lambda3 | 10000 | 0.0155 | 0.00735 | 0.0102 | 0.0144 | 0.0195 |
Lambda4 | 10000 | 0.0236 | 0.0116 | 0.0152 | 0.0217 | 0.0297 |
Lambda5 | 10000 | 0.3634 | 0.1965 | 0.2186 | 0.3266 | 0.4685 |
Lambda6 | 10000 | 0.0278 | 0.0153 | 0.0166 | 0.0249 | 0.0356 |
Lambda7 | 10000 | 0.0265 | 0.0151 | 0.0157 | 0.0236 | 0.0338 |
Lambda8 | 10000 | 0.0558 | 0.0323 | 0.0322 | 0.0488 | 0.0721 |
Group | 10000 | -0.6154 | 0.3570 | -0.8569 | -0.6186 | -0.3788 |
Output 85.14.7: Interval Statistics
Posterior Intervals | |||||
---|---|---|---|---|---|
Parameter | Alpha | Equal-Tail Interval | HPD Interval | ||
Lambda1 | 0.050 | 0.000289 | 0.00199 | 0.000208 | 0.00182 |
Lambda2 | 0.050 | 0.00247 | 0.0165 | 0.00194 | 0.0152 |
Lambda3 | 0.050 | 0.00484 | 0.0331 | 0.00341 | 0.0301 |
Lambda4 | 0.050 | 0.00699 | 0.0515 | 0.00478 | 0.0462 |
Lambda5 | 0.050 | 0.0906 | 0.8325 | 0.0541 | 0.7469 |
Lambda6 | 0.050 | 0.00676 | 0.0654 | 0.00409 | 0.0580 |
Lambda7 | 0.050 | 0.00614 | 0.0648 | 0.00421 | 0.0569 |
Lambda8 | 0.050 | 0.0132 | 0.1368 | 0.00637 | 0.1207 |
Group | 0.050 | -1.3190 | 0.0893 | -1.3379 | 0.0652 |
The requested diagnostics—namely, lag1, lag5, lag10, lag50 autocorrelations (Output 85.14.8), the Geweke diagnostics (Output 85.14.9), and the effective sample size diagnostics (Output 85.14.10)—show a good mixing of the Markov chain.
Output 85.14.8: Autocorrelations
Posterior Autocorrelations | ||||
---|---|---|---|---|
Parameter | Lag 1 | Lag 5 | Lag 10 | Lag 50 |
Lambda1 | 0.0705 | 0.0015 | 0.0017 | -0.0076 |
Lambda2 | 0.0909 | 0.0206 | -0.0013 | -0.0039 |
Lambda3 | 0.0861 | -0.0072 | 0.0011 | 0.0002 |
Lambda4 | 0.1447 | -0.0023 | 0.0081 | 0.0082 |
Lambda5 | 0.1086 | 0.0072 | -0.0038 | -0.0028 |
Lambda6 | 0.1281 | 0.0049 | -0.0036 | 0.0048 |
Lambda7 | 0.1925 | -0.0011 | 0.0094 | -0.0011 |
Lambda8 | 0.2128 | 0.0322 | -0.0042 | -0.0045 |
Group | 0.5638 | 0.0410 | -0.0003 | -0.0071 |
Output 85.14.9: Geweke Diagnostics
Output 85.14.10: Effective Sample Size
Effective Sample Sizes | |||
---|---|---|---|
Parameter | ESS | Autocorrelation Time |
Efficiency |
Lambda1 | 7775.3 | 1.2861 | 0.7775 |
Lambda2 | 6874.8 | 1.4546 | 0.6875 |
Lambda3 | 7655.7 | 1.3062 | 0.7656 |
Lambda4 | 6337.1 | 1.5780 | 0.6337 |
Lambda5 | 6563.3 | 1.5236 | 0.6563 |
Lambda6 | 6720.8 | 1.4879 | 0.6721 |
Lambda7 | 5968.7 | 1.6754 | 0.5969 |
Lambda8 | 5137.2 | 1.9466 | 0.5137 |
Group | 2980.4 | 3.3553 | 0.2980 |