The CALIS Procedure
-
Overview
-
Getting Started
-
Syntax
-
Details
Input Data SetsOutput Data SetsDefault Analysis Type and Default ParameterizationThe COSAN ModelThe FACTOR ModelThe LINEQS ModelThe LISMOD Model and SubmodelsThe MSTRUCT ModelThe PATH ModelThe RAM ModelNaming Variables and ParametersSetting Constraints on ParametersAutomatic Variable SelectionPath Diagrams: Layout Algorithms, Default Settings, and CustomizationEstimation CriteriaRelationships among Estimation CriteriaGradient, Hessian, Information Matrix, and Approximate Standard ErrorsCounting the Degrees of FreedomAssessment of FitCase-Level Residuals, Outliers, Leverage Observations, and Residual DiagnosticsLatent Variable ScoresTotal, Direct, and Indirect EffectsStandardized SolutionsModification IndicesMissing Values and the Analysis of Missing PatternsMeasures of Multivariate KurtosisInitial EstimatesUse of Optimization TechniquesComputational ProblemsDisplayed OutputODS Table NamesODS Graphics
-
Examples
- References
Subsections:
- Input Data Sets
- Output Data Sets
- Default Analysis Type and Default Parameterization
- The COSAN Model
- The FACTOR Model
- The LINEQS Model
- The LISMOD Model and Submodels
- The MSTRUCT Model
- The PATH Model
- The RAM Model
- Naming Variables and Parameters
- Setting Constraints on Parameters
- Automatic Variable Selection
- Path Diagrams: Layout Algorithms, Default Settings, and Customization
- Estimation Criteria
- Relationships among Estimation Criteria
- Gradient, Hessian, Information Matrix, and Approximate Standard Errors
- Counting the Degrees of Freedom
- Assessment of Fit
- Case-Level Residuals, Outliers, Leverage Observations, and Residual Diagnostics
- Latent Variable Scores
- Total, Direct, and Indirect Effects
- Standardized Solutions
- Modification Indices
- Missing Values and the Analysis of Missing Patterns
- Measures of Multivariate Kurtosis
- Initial Estimates
- Use of Optimization Techniques
- Computational Problems
- Displayed Output
- ODS Table Names
- ODS Graphics