The MCMC Procedure

References

  • Aitkin, M., Anderson, D. A., Francis, B., and Hinde, J. (1989). Statistical Modelling in GLIM. Oxford: Oxford Science Publications.

  • Atkinson, A. C. (1979). “The Computer Generation of Poisson Random Variables.” Journal of the Royal Statistical Society, Series C 28:29–35.

  • Atkinson, A. C., and Whittaker, J. (1976). “A Switching Algorithm for the Generation of Beta Random Variables with at Least One Parameter Less Than One.” Journal of the Royal Statistical Society, Series A 139:462–467.

  • Bacon, D. W., and Watts, D. G. (1971). “Estimating the Transition between Two Intersecting Straight Lines.” Biometrika 58:525–534.

  • Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. 2nd ed. New York: Springer-Verlag.

  • Box, G. E. P., and Cox, D. R. (1964). “An Analysis of Transformations.” Journal of the Royal Statistical Society, Series B 26:211–234.

  • Byrne, G. D., and Hindmarsh, A. C. (1975). “A Polyalgorithm for the Numerical Solution of ODEs.” ACM Transactions on Mathematical Software 1:71–96.

  • Carlin, B. P., Gelfand, A. E., and Smith, A. F. M. (1992). “Hierarchical Bayesian Analysis of Changepoint Problems.” Journal of the Royal Statistical Society, Series C 41:389–405.

  • Chaloner, K. (1994). “Residual Analysis and Outliers in Bayesian Hierarchical Models.” In Aspects of Uncertainty: A Tribute to D. V. Lindley, 149–157. New York: John Wiley & Sons.

  • Chaloner, K., and Brant, R. (1988). “A Bayesian Approach to Outlier Detection and Residual Analysis.” Biometrika 75:651–659.

  • Cheng, R. C. H. (1978). “Generating Beta Variates with Non-integral Shape Parameters.” Communications ACM 28:290–295.

  • Clayton, D. G. (1991). “A Monte Carlo Method for Bayesian Inference in Frailty Models.” Biometrics 47:467–485.

  • Congdon, P. (2003). Applied Bayesian Modeling. Chichester, UK: John Wiley & Sons.

  • Crowder, M. J. (1978). “Beta-Binomial Anova for Proportions.” Journal of the Royal Statistical Society, Series C 27:34–37.

  • Draper, D. (1996). “Discussion of the Paper by Lee and Nelder.” Journal of the Royal Statistical Society, Series B 58:662–663.

  • Eilers, P. H. C., and Marx, B. D. (1996). “Flexible Smoothing with B-Splines and Penalties.” Statistical Science 11:89–121. With discussion.

  • Finney, D. J. (1947). “The Estimation from Individual Records of the Relationship between Dose and Quantal Response.” Biometrika 34:320–334.

  • Fisher, R. A. (1935). “The Fiducial Argument in Statistical Inference.” Annals of Eugenics 6:391–398.

  • Fishman, G. S. (1996). Monte Carlo: Concepts, Algorithms, and Applications. New York: John Wiley & Sons.

  • Gaver, D. P., and O’Muircheartaigh, I. G. (1987). “Robust Empirical Bayes Analysis of Event Rates.” Technometrics 29:1–15.

  • Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M. (1990). “Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling.” Journal of the American Statistical Association 85:972–985.

  • Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis. 2nd ed. London: Chapman & Hall.

  • Gentleman, R., and Geyer, C. J. (1994). “Maximum Likelihood for Interval Censored Data: Consistency and Computation.” Biometrika 81:618–623.

  • Gilks, W. R. (2003). “Adaptive Metropolis Rejection Sampling (ARMS).” Software from MRC Biostatistics Unit, Cambridge, UK. http://www.maths.leeds.ac.uk/~wally.gilks/adaptive.rejection/web_page/Welcome.html.

  • Gilks, W. R., and Wild, P. (1992). “Adaptive Rejection Sampling for Gibbs Sampling.” Journal of the Royal Statistical Society, Series C 41:337–348.

  • Holmes, C. C., and Held, L. (2006). “Bayesian Auxiliary Variable Models for Binary and Multinomial Regression.” Bayesian Analysis 1:145–168. http://ba.stat.cmu.edu/journal/2006/vol01/issue01/held.pdf.

  • Ibrahim, J. G., Chen, M.-H., and Lipsitz, S. R. (2001). “Missing Responses in Generalised Linear Mixed Models When the Missing Data Mechanism Is Nonignorable.” Biometrika 88:551–564.

  • Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998). “Markov Chain Monte Carlo in Practice: A Roundtable Discussion.” American Statistician 52:93–100.

  • Krall, J. M., Uthoff, V. A., and Harley, J. B. (1975). “A Step-Up Procedure for Selecting Variables Associated with Survival.” Biometrics 31:49–57.

  • Kuhfeld, W. F. (2010). Conjoint Analysis. Technical report, SAS Institute Inc., Cary, NC. http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html.

  • Lin, D. Y. (1994). “Cox Regression Analysis of Multivariate Failure Time Data: The Marginal Approach.” Statistics in Medicine 13:2233–2247.

  • Little, R. J. A., and Rubin, D. B. (2002). Statistical Analysis with Missing Data. 2nd ed. Hoboken, NJ: John Wiley & Sons.

  • Matsumoto, M., and Kurita, Y. (1992). “Twisted GFSR Generators.” ACM Transactions on Modeling and Computer Simulation 2:179–194.

  • Matsumoto, M., and Kurita, Y. (1994). “Twisted GFSR Generators II.” ACM Transactions on Modeling and Computer Simulation 4:254–266.

  • Matsumoto, M., and Nishimura, T. (1998). “Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-random Number Generator.” ACM Transactions on Modeling and Computer Simulation 8:3–30.

  • McGrath, E. J., and Irving, D. C. (1973). Techniques for Efficient Monte Carlo Simulation, Vol. 2: Random Number Generation for Selected Probability Distributions. Technical report, Science Applications Inc., La Jolla, CA.

  • Michael, J. R., Schucany, W. R., and Haas, R. W. (1976). “Generating Random Variates Using Transformations with Multiple Roots.” American Statistician 30:88–90.

  • Pinheiro, J. C., and Bates, D. M. (1995). “Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model.” Journal of Computational and Graphical Statistics 4:12–35.

  • Pregibon, D. (1981). “Logistic Regression Diagnostics.” Annals of Statistics 9:705–724.

  • Ralston, A., and Rabinowitz, P. (1978). A First Course in Numerical Analysis. New York: McGraw-Hill.

  • Rice, S. O. (1973). “Efficient Evaluation of Integrals of Analytic Functions by the Trapezoidal Rule.” Bell System Technical Journal 52:707–722.

  • Ripley, B. D. (1987). Stochastic Simulation. New York: John Wiley & Sons.

  • Robert, C. P. (1995). “Simulation of Truncated Normal Variables.” Statistics and Computing 5:121–125.

  • Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms.” Annals of Applied Probability 7:110–120.

  • Roberts, G. O., and Rosenthal, J. S. (2001). “Optimal Scaling for Various Metropolis-Hastings Algorithms.” Statistical Science 16:351–367.

  • Rubin, D. B. (1976). “Inference and Missing Data.” Biometrika 63:581–592.

  • Rubin, D. B. (1981). “Estimation in Parallel Randomized Experiments.” Journal of Educational Statistics 6:377–411.

  • Schervish, M. J. (1995). Theory of Statistics. New York: Springer-Verlag.

  • Sharples, L. (1990). “Identification and Accommodation of Outliers in General Hierarchical Models.” Biometrika 77:445–453.

  • Sikorsky, K. (1982). “Optimal Quadrature Algorithms in $H_ P$ Spaces.” Numerische Mathematik 39:405–410.

  • Sikorsky, K., and Stenger, F. (1984). “Optimal Quadratures in $H_ P$ Spaces.” ACM Transactions on Mathematical Software 3:140–151.

  • Spiegelhalter, D. J., Thomas, A., Best, N. G., and Gilks, W. R. (1996a). “BUGS Examples, Volume 1.” Version 0.5 (version ii).

  • Spiegelhalter, D. J., Thomas, A., Best, N. G., and Gilks, W. R. (1996b). “BUGS Examples, Volume 2.” Version 0.5 (version ii).

  • Squire, W. (1987). “Comparison of Gauss-Hermite and Midpoint Quadrature with Application to the Voigt Function.” In Numerical Integration: Recent Developments, edited by P. Keast, and G. Fairweather, 111–112. Dordrecht, Netherlands: D. Reidel Publishing.

  • Stenger, F. (1973a). “Integration Formulas Based on the Trapezoidal Formula.” Journal of the Institute of Mathematics and Its Applications 12:103–114.

  • Stenger, F. (1973b). “Remarks on Integration Formulas Based on the Trapezoidal Formula.” Journal of the Institute of Mathematics and Its Applications 19:145–147.