The section Univariate Distributions (Table 73.7 through Table 73.35) lists all univariate distributions that PROC MCMC recognizes. The section Multivariate Distributions (Table 73.36 through Table 73.40) lists all multivariate distributions that PROC MCMC recognizes. With the exception of the multinomial distribution, all these distributions can be used in the MODEL , PRIOR , and HYPERPRIOR statements. The multinomial distribution is supported only in the MODEL statement. The RANDOM statement supports a limited number of distributions; see Table 73.4 for the complete list.
See the section Using Density Functions in the Programming Statements for information about how to use distributions in the programming statements. To specify an arbitrary distribution, you can use the GENERAL and DGENERAL functions. See the section Specifying a New Distribution for more details. See the section Truncation and Censoring for tips about how to work with truncated distributions and censoring data.
Table 73.7: Beta Distribution
Table 73.8: Binary Distribution
PROC specification |
binary(p) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
round |
Variance |
|
Mode |
|
Random number |
Generate . If , ; else, |
Table 73.9: Binomial Distribution
PROC specification |
binomial(n, p) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
|
Variance |
|
Mode |
|
Table 73.10: Cauchy Distribution
PROC specification |
cauchy(a, b) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
Does not exist. |
Variance |
Does not exist. |
Mode |
a |
Random number |
Generate ; let . Repeat the procedure until . is a draw from the standard Cauchy, and (Ripley 1987). |
Table 73.11: Distribution
PROC specification |
chisq() |
Density |
|
Parameter restriction |
|
Range |
if ; otherwise. |
Mean |
|
Variance |
|
Mode |
if ; does not exist otherwise. |
Random number |
is a special case of the gamma distribution: is a draw from the distribution. |
Table 73.12: Exponential Distribution
PROC specification |
expchisq() |
Density |
|
Parameter restriction |
|
Range |
|
Mode |
|
Random number |
Generate , and is a draw from the exponential distribution. |
Relationship to the distribution |
|
Table 73.13: Exponential Exponential Distribution
PROC specification |
expexpon( |
expexpon( |
Density |
|
|
Parameter restriction |
|
|
Range |
|
Same |
Mode |
|
|
Random number |
Generate , and is a draw from the exponential exponential distribution. Note that an exponential exponential distribution is not the same as the double exponential distribution. |
|
Relationship to the exponential distribution |
|
Table 73.14: Exponential Gamma Distribution
PROC specification |
expgamma(a, |
expgamma(a, |
Density |
|
|
Parameter restriction |
|
|
Range |
|
Same |
Mode |
|
|
Random number |
Generate , and is a draw from the exponential gamma distribution. |
|
Relationship to the distribution |
|
Table 73.15: Exponential Inverse Distribution
PROC specification |
expichisq() |
Density |
|
Parameter restriction |
|
Range |
|
Mode |
|
Random number |
Generate , and is a draw from the exponential inverse distribution. |
Relationship to the distribution |
|
Table 73.16: Exponential Inverse-Gamma Distribution
PROC specification |
expigamma(a, |
expigamma(a, |
Density |
|
|
Parameter restriction |
|
|
Range |
|
Same |
Mode |
|
|
Random number |
Generate , and is a draw from the exponential inverse-gamma distribution. |
|
Relationship to the distribution |
|
Table 73.17: Exponential Scaled Inverse Distribution
PROC specification |
expsichisq(, s) |
Density |
|
Parameter restriction |
|
Range |
|
Mode |
|
Random number |
Generate , and is a draw from the exponential scaled inverse distribution. |
Relationship to the distribution |
|
Table 73.18: Exponential Distribution
PROC specification |
expon( |
expon( |
Density |
|
|
Parameter restriction |
|
|
Range |
|
Same |
Mean |
b |
|
Variance |
|
|
Mode |
0 |
0 |
Random number |
The exponential distribution is a special case of the gamma distribution: is a draw from the exponential distribution. |
Table 73.19: Gamma Distribution
PROC specification |
gamma(a, |
gamma(a, |
Density |
|
|
Parameter restriction |
|
|
Range |
if otherwise. |
Same |
Mean |
ab |
|
Variance |
|
|
Mode |
if |
if |
Random number |
See (McGrath and Irving 1973). |
Table 73.20: Geometric Distribution
PROC specification |
geo(p) |
Density * |
|
Parameter restriction |
|
Range |
|
Mean |
round() |
Variance |
|
Mode |
0 |
Random number |
Based on samples obtained from a Bernoulli distribution with probability p until the first success. |
*The random variable is the total number of failures in an experiment before the first success. This density function is not to be confused with another popular formulation, , which counts the total number of trials until the first success. |
Table 73.21: Inverse Distribution
PROC specification |
ichisq() |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
if |
Variance |
if |
Mode |
|
Random number |
Inverse is a special case of the inverse-gamma distribution: is a draw from the inverse distribution. |
Table 73.22: Inverse-Gamma Distribution
PROC specification |
igamma(a, |
igamma(a, |
Density |
|
|
Parameter restriction |
|
|
Range |
|
Same |
Mean |
if |
if |
Variance |
|
|
Mode |
|
|
Random number |
Generate , and is a draw from the distribution. |
|
Relationship to the gamma distribution |
|
Table 73.23: Laplace (Double Exponential) Distribution
PROC specification |
laplace(a, |
laplace(a, |
Density |
|
|
Parameter restriction |
|
|
Range |
|
Same |
Mean |
a |
a |
Variance |
|
|
Mode |
a |
a |
Random number |
Inverse CDF. Generate . If else . is a draw from the Laplace distribution. |
Table 73.24: Logistic Distribution
PROC specification |
logistic(a, b) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
a |
Variance |
|
Mode |
a |
Random number |
Inverse CDF method with . Generate , and is a draw from the logistic distribution. |
Table 73.25: Lognormal Distribution
PROC specification |
lognormal(, |
lognormal(, |
lognormal(, |
Density |
|
|
|
Parameter restriction |
|
|
|
Range |
|
Same |
Same |
Mean |
|
|
|
Variance |
|
|
|
Mode |
|
|
|
Random number |
Generate , and is a draw from the lognormal distribution. |
Table 73.26: Negative Binomial Distribution
PROC specification |
negbin(n, p) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
round |
Variance |
|
Mode |
|
Random number |
Generate , and (Fishman 1996). |
Table 73.27: Normal Distribution
PROC specification |
normal(, |
normal(, |
normal(, |
Density |
|
|
|
Parameter restriction |
|
|
|
Range |
|
Same |
Same |
Mean |
|
Same |
Same |
Variance |
|
v |
|
Mode |
|
Same |
Same |
Table 73.28: Pareto Distribution
PROC specification |
pareto(a, b) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
if |
Variance |
if |
Mode |
b |
Random number |
Inverse CDF method with . Generate , and is a draw from the Pareto distribution. |
Useful transformation |
is Beta(a, 1)I{}. |
Table 73.29: Poisson Distribution
PROC specification |
poisson() |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
|
Variance |
, if |
Mode |
round |
Table 73.30: Scaled Inverse Distribution
PROC specification |
sichisq() |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
if |
Variance |
if |
Mode |
|
Random number |
Scaled inverse is a special case of the inverse-gamma distribution: is a draw from the scaled inverse distribution. |
Table 73.31: t Distribution
PROC specification |
t(, |
t(, |
t(, |
Density |
|
|
|
Parm restriction |
, |
, |
, |
Range |
|
Same |
Same |
Mean |
if |
Same |
Same |
Variance |
if |
if |
if |
Mode |
|
Same |
Same |
Random number |
is a draw from the t distribution. |
Table 73.32: Table (Categorical) Distribution
PROC specification |
table(), where , for |
Density |
|
Parameter restriction |
with all |
Range |
|
Mode |
i such that |
Random number |
Inverse CDF method with . |
Table 73.33: Uniform Distribution
Table 73.34: Wald Distribution
PROC specification |
wald(, ) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
|
Variance |
|
Mode |
|
Random number |
Generate . Let and . Perform a Bernoulli trial, . If , choose ; otherwise, choose (Michael, Schucany, and Haas 1976). |
Table 73.35: Weibull Distribution
PROC specification |
weibull(, c, ) |
Density |
|
Parameter restriction |
|
Range |
if otherwise |
Mean |
|
Variance |
|
Mode |
if |
Random number |
Inverse CDF method with . Generate , and is a draw from the Weibull distribution. |
Table 73.36: Dirichlet Distribution
PROC specification |
dirich(), where , for |
Density |
, where |
Parameter restriction |
|
Range |
, |
Mean |
|
Mode |
|
Table 73.37: Inverse Wishart Distribution
PROC specification |
iwishart(, ), both and are matrices |
Density |
|
Parameter restriction |
must be symmetric and positive definite; |
Range |
is symmetric and positive definite |
Mean |
|
Mode |
|
Table 73.38: Multivariate Normal Distribution
PROC specification |
mvn(, ), where , for , and is a variance matrix |
Density |
|
Parameter restriction |
must be symmetric and positive definite |
Range |
|
Mean |
|
Mode |
|
Table 73.39: Autoregressive Multivariate Normal Distribution
PROC specification |
MVNAR(, |
MVNAR(, |
MVNAR(, |
Density |
where
|
||
Parameter restriction |
and |
||
Range |
|
||
Mean |
|
||
Mode |
|
||
Special Case |
When , the distribution simplifies to mvn(, ), where denotes the identity matrix |
Table 73.40: Multinomial Distribution
PROC specification |
multinom(), where and , for |
Density |
, where |
Parameter restriction |
with all |
Range |
, nonnegative integers |
Mean |
|