The GLIMMIX Procedure

References

  • Abramowitz, M., and Stegun, I. A., eds. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 10th printing. New York: Dover.

  • Akaike, H. (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control AC-19:716–723.

  • Bahadur, R. R. (1961). “A Representation of the Joint Distribution of Responses to n Dichotomous Items.” In Studies in Item Analysis and Prediction, edited by H. Solomon, 158–168. Stanford, CA: Stanford University Press.

  • Beale, E. M. L. (1972). “A Derivation of Conjugate Gradients.” In Numerical Methods for Nonlinear Optimization, edited by F. A. Lootsma, 39–43. London: Academic Press.

  • Bell, R. M., and McCaffrey, D. F. (2002). “Bias Reduction in Standard Errors for Linear Regression with Multi-stage Samples.” Survey Methodology 28:169–181.

  • Bickel, P. J., and Doksum, K. A. (1977). Mathematical Statistics. San Francisco: Holden-Day.

  • Booth, J. G., and Hobert, J. P. (1998). “Standard Errors of Prediction in Generalized Linear Mixed Models.” Journal of the American Statistical Association 93:262–272.

  • Bozdogan, H. (1987). “Model Selection and Akaike’s Information Criterion (AIC): The General Theory and Its Analytical Extensions.” Psychometrika 52:345–370.

  • Breslow, N. E., and Clayton, D. G. (1993). “Approximate Inference in Generalized Linear Mixed Models.” Journal of the American Statistical Association 88:9–25.

  • Breslow, N. E., and Lin, X. (1995). “Bias Correction in Generalised Linear Mixed Models with a Single Component of Dispersion.” Biometrika 81:81–91.

  • Brinkman, N. D. (1981). “Ethanol Fuel: A Single-Cylinder Engine Study of Efficiency and Exhaust Emissions.” Society of Automotive Engineers Transactions 90:1410–1424.

  • Brown, H., and Prescott, R. (1999). Applied Mixed Models in Medicine. New York: John Wiley & Sons.

  • Burdick, R. K., and Graybill, F. A. (1992). Confidence Intervals on Variance Components. New York: Marcel Dekker.

  • Burnham, K. P., and Anderson, D. R. (1998). Model Selection and Inference: A Practical Information-Theoretic Approach. New York: Springer-Verlag.

  • Cameron, A. C., and Trivedi, P. K. (1998). Regression Analysis of Count Data. Cambridge: Cambridge University Press.

  • Clayton, D. G., and Kaldor, J. (1987). “Empirical Bayes Estimates of Age-Standardized Relative Risks for Use in Disease Mapping.” Biometrics 43:671–681.

  • Cleveland, W. S., and Grosse, E. (1991). “Computational Methods for Local Regression.” Statistics and Computing 1:47–62.

  • Cockerham, C. C., and Weir, B. S. (1977). “Quadratic Analyses of Reciprocal Crosses.” Biometrics 33:187–203.

  • Davis, A. W. (1977). “A Differential Equation Approach to Linear Combinations of Independent Chi-Squares.” Journal of the American Statistical Association 72:212–214.

  • De Boor, C. (2001). A Practical Guide to Splines. Rev. ed. New York: Springer-Verlag.

  • Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981). “An Adaptive Nonlinear Least-Squares Algorithm.” ACM Transactions on Mathematical Software 7:348–368.

  • Dennis, J. E., and Mei, H. H. W. (1979). “Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values.” Journal of Optimization Theory and Applications 28:453–482.

  • Dennis, J. E., and Schnabel, R. B. (1983). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall.

  • Diggle, P. J., Liang, K.-Y., and Zeger, S. L. (1994). Analysis of Longitudinal Data. Oxford: Clarendon Press.

  • Dunnett, C. W. (1980). “Pairwise Multiple Comparisons in the Unequal Variance Case.” Journal of the American Statistical Association 75:796–800.

  • Edwards, D., and Berry, J. J. (1987). “The Efficiency of Simulation-Based Multiple Comparisons.” Biometrics 43:913–928.

  • Eilers, P. H. C., and Marx, B. D. (1996). “Flexible Smoothing with B-Splines and Penalties.” Statistical Science 11:89–121. With discussion.

  • Eskow, E., and Schnabel, R. B. (1991). “Algorithm 695: Software for a New Modified Cholesky Factorization.” ACM Transactions on Mathematical Software 17:306–312.

  • Evans, G. (1993). Practical Numerical Integration. New York: John Wiley & Sons.

  • Fai, A. H. T., and Cornelius, P. L. (1996). “Approximate F-Tests of Multiple Degree of Freedom Hypotheses in Generalized Least Squares Analyses of Unbalanced Split-Plot Experiments.” Journal of Statistical Computation and Simulation 54:363–378.

  • Fay, M. P., and Graubard, B. I. (2001). “Small-Sample Adjustments for Wald-Type Tests Using Sandwich Estimators.” Biometrics 57:1198–1206.

  • Ferrari, S. L. P., and Cribari-Neto, F. (2004). “Beta Regression for Modelling Rates and Proportions.” Journal of Applied Statistics 31:799–815.

  • Fisher, R. A. (1936). “The Use of Multiple Measurements in Taxonomic Problems.” Annals of Eugenics 7:179–188.

  • Fletcher, R. (1987). Practical Methods of Optimization. 2nd ed. Chichester, UK: John Wiley & Sons.

  • Friedman, J. H., Bentley, J. L., and Finkel, R. A. (1977). “An Algorithm for Finding Best Matches in Logarithmic Expected Time.” ACM Transactions on Mathematical Software 3:209–226.

  • Fuller, W. A. (1976). Introduction to Statistical Time Series. New York: John Wiley & Sons.

  • Games, P. A., and Howell, J. F. (1976). “Pairwise Multiple Comparison Procedures with Unequal n’s and/or Variances: A Monte Carlo Study.” Journal of Educational Statistics 1:113–125.

  • Gay, D. M. (1983). “Subroutines for Unconstrained Minimization.” ACM Transactions on Mathematical Software 9:503–524.

  • Giesbrecht, F. G., and Burns, J. C. (1985). “Two-Stage Analysis Based on a Mixed Model: Large-Sample Asymptotic Theory and Small-Sample Simulation Results.” Biometrics 41:477–486.

  • Gilliland, D., and Schabenberger, O. (2001). “Limits on Pairwise Association for Equi-correlated Binary Variables.” Journal of Applied Statistical Sciences 10:279–285.

  • Gilmour, A. R., Anderson, R. D., and Rae, A. L. (1987). “Variance Components on an Underlying Scale for Ordered Multiple Threshold Categorical Data Using a Generalized Linear Mixed Model.” Journal of Animal Breeding and Genetics 104:149–155.

  • Golub, G. H., and Welsch, J. H. (1969). “Calculation of Gaussian Quadrature Rules.” Mathematical Computing 23:221–230.

  • Goodnight, J. H. (1978a). Computing MIVQUE0 Estimates of Variance Components. Technical Report R-105, SAS Institute Inc., Cary, NC.

  • Goodnight, J. H. (1978b). Tests of Hypotheses in Fixed-Effects Linear Models. Technical Report R-101, SAS Institute Inc., Cary, NC.

  • Goodnight, J. H. (1979). “A Tutorial on the Sweep Operator.” American Statistician 33:149–158.

  • Goodnight, J. H., and Hemmerle, W. J. (1979). “A Simplified Algorithm for the W-Transformation in Variance Component Estimation.” Technometrics 21:265–268.

  • Gotway, C. A., and Stroup, W. W. (1997). “A Generalized Linear Model Approach to Spatial Data and Prediction.” Journal of Agricultural, Biological, and Environmental Statistics 2:157–187.

  • Guirguis, G. H., and Tobias, R. D. (2004). “On the Computation of the Distribution for the Analysis of Means.” Communications in Statistics—Simulation and Computation 33:861–888.

  • Hand, D. J., Daly, F., Lunn, A. D., McConway, K. J., and Ostrowski, E. (1994). A Handbook of Small Data Sets. London: Chapman & Hall.

  • Handcock, M. S., and Stein, M. L. (1993). “A Bayesian Analysis of Kriging.” Technometrics 35:403–410.

  • Handcock, M. S., and Wallis, J. R. (1994). “An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields (with Discussion).” Journal of the American Statistical Association 89:368–390.

  • Hannan, E. J., and Quinn, B. G. (1979). “The Determination of the Order of an Autoregression.” Journal of the Royal Statistical Society, Series B 41:190–195.

  • Harville, D. A., and Jeske, D. R. (1992). “Mean Squared Error of Estimation or Prediction under a General Linear Model.” Journal of the American Statistical Association 87:724–731.

  • Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer-Verlag.

  • Hemmerle, W. J., and Hartley, H. O. (1973). “Computing Maximum Likelihood Estimates for the Mixed AOV Model Using the W-Transformation.” Technometrics 15:819–831.

  • Henderson, C. R. (1984). Applications of Linear Models in Animal Breeding. Guelph, ON: University of Guelph.

  • Hinkley, D. V. (1977). “Jackknifing in Unbalanced Situations.” Technometrics 19:285–292.

  • Hirotsu, C., and Srivastava, M. (2000). “Simultaneous Confidence Intervals Based on One-Sided Max t Test.” Statistics and Probability Letters 49:25–37.

  • Holm, S. (1979). “A Simple Sequentially Rejective Multiple Test Procedure.” Scandinavian Journal of Statistics 6:65–70.

  • Hsu, J. C. (1992). “The Factor Analytic Approach to Simultaneous Inference in the General Linear Model.” Journal of Computational and Graphical Statistics 1:151–168.

  • Hsu, J. C. (1996). Multiple Comparisons: Theory and Methods. London: Chapman & Hall.

  • Hsu, J. C., and Peruggia, M. (1994). “Graphical Representation of Tukey’s Multiple Comparison Method.” Journal of Computational and Graphical Statistics 3:143–161.

  • Huber, P. J. (1967). “The Behavior of Maximum Likelihood Estimates under Nonstandard Conditions.” Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1:221–233.

  • Hurvich, C. M., and Tsai, C.-L. (1989). “Regression and Time Series Model Selection in Small Samples.” Biometrika 76:297–307.

  • Huynh, H., and Feldt, L. S. (1970). “Conditions Under Which Mean Square Ratios in Repeated Measurements Designs Have Exact F-Distributions.” Journal of the American Statistical Association 65:1582–1589.

  • Jennrich, R. I., and Schluchter, M. D. (1986). “Unbalanced Repeated-Measures Models with Structured Covariance Matrices.” Biometrics 42:805–820.

  • Joe, H., and Zhu, R. (2005). “Generalized Poisson Distribution: The Property of Mixture of Poisson and Comparison with Negative Binomial Distribution.” Biometrical Journal 47:219–229.

  • Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate Distributions. 2nd ed. Vol. 1. New York: John Wiley & Sons.

  • Kackar, R. N., and Harville, D. A. (1984). “Approximations for Standard Errors of Estimators of Fixed and Random Effects in Mixed Linear Models.” Journal of the American Statistical Association 79:853–862.

  • Kahaner, D., Moler, C. B., and Nash, S. (1989). Numerical Methods and Software. Englewood Cliffs, NJ: Prentice-Hall.

  • Karim, M. R., and Zeger, S. L. (1992). “Generalized Linear Models with Random Effects; Salamander Mating Revisited.” Biometrics 48:631–644.

  • Kass, R. E., and Steffey, D. (1989). “Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models).” Journal of the American Statistical Association 84:717–726.

  • Kauermann, G., and Carroll, R. J. (2001). “A Note on the Efficiency of Sandwich Covariance Estimation.” Journal of the American Statistical Association 96:1387–1396.

  • Kenward, M. G. (1987). “A Method for Comparing Profiles of Repeated Measurements.” Journal of the Royal Statistical Society, Series C 36:296–308.

  • Kenward, M. G., and Roger, J. H. (1997). “Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood.” Biometrics 53:983–997.

  • Kenward, M. G., and Roger, J. H. (2009). “An Improved Approximation to the Precision of Fixed Effects from Restricted Maximum Likelihood.” Computational Statistics and Data Analysis 53:2583–2595.

  • Koch, G. G., Carr, G. J., Amara, I. A., Stokes, M. E., and Uryniak, T. J. (1990). “Categorical Data Analysis.” In Statistical Methodology in the Pharmaceutical Sciences, edited by D. A. Berry, 391–475. New York: Marcel Dekker.

  • Kramer, C. Y. (1956). “Extension of Multiple Range Tests to Group Means with Unequal Numbers of Replications.” Biometrics 12:307–310.

  • Lange, K. (1999). Numerical Analysis for Statisticians. New York: Springer-Verlag.

  • Liang, K.-Y., and Zeger, S. L. (1986). “Longitudinal Data Analysis Using Generalized Linear Models.” Biometrika 73:13–22.

  • Lin, X., and Breslow, N. E. (1996). “Bias Correction in Generalized Linear Mixed Models with Multiple Components of Dispersion.” Journal of the American Statistical Association 91:1007–1016.

  • Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. (2006). SAS for Mixed Models. 2nd ed. Cary, NC: SAS Institute Inc.

  • Long, J. S., and Ervin, L. H. (2000). “Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model.” American Statistician 54:217–224.

  • Macchiavelli, R. E., and Arnold, S. F. (1994). “Variable Order Ante-dependence Models.” Communications in Statistics—Theory and Methods 23:2683–2699.

  • MacKinnon, J. G., and White, H. (1985). “Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties.” Journal of Econometrics 29:305–325.

  • Mancl, L. A., and DeRouen, T. A. (2001). “A Covariance Estimator for GEE with Improved Small-Sample Properties.” Biometrics 57:126–134.

  • Matérn, B. (1986). Spatial Variation. 2nd ed. New York: Springer-Verlag.

  • McCullagh, P. (1980). “Regression Models for Ordinal Data.” Journal of the Royal Statistical Society, Series B 42:109–142.

  • McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. London: Chapman & Hall.

  • McLean, R. A., and Sanders, W. L. (1988). “Approximating Degrees of Freedom for Standard Errors in Mixed Linear Models.” In Proceedings of the Statistical Computing Section, 50–59. Alexandria, VA: American Statistical Association.

  • McLean, R. A., Sanders, W. L., and Stroup, W. W. (1991). “A Unified Approach to Mixed Linear Models.” American Statistician 45:54–64.

  • Milliken, G. A., and Johnson, D. E. (1992). Designed Experiments. Vol. 1 of Analysis of Messy Data. Reprint edition. New York: Chapman & Hall.

  • Moré, J. J. (1978). “The Levenberg-Marquardt Algorithm: Implementation and Theory.” In Lecture Notes in Mathematics, vol. 30, edited by G. A. Watson, 105–116. Berlin: Springer-Verlag.

  • Moré, J. J., and Sorensen, D. C. (1983). “Computing a Trust-Region Step.” SIAM Journal on Scientific and Statistical Computing 4:553–572.

  • Morel, J. G. (1989). “Logistic Regression under Complex Survey Designs.” Survey Methodology 15:203–223.

  • Morel, J. G., Bokossa, M. C., and Neerchal, N. K. (2003). “Small Sample Correction for the Variance of GEE Estimators.” Biometrical Journal 4:395–409.

  • Moriguchi, S., ed. (1976). Statistical Method for Quality Control. Tokyo: Japan Standards Association. In Japanese.

  • Mosteller, F., and Tukey, J. W. (1977). Data Analysis and Regression. Reading, MA: Addison-Wesley.

  • Murray, D. M., Varnell, S. P., and Blitstein, J. L. (2004). “Design and Analysis of Group-Randomized Trials: A Review of Recent Methodological Developments.” American Journal of Public Health 94:423–432.

  • National Institute of Standards and Technology (1998). “Statistical Reference Data Sets.” Accessed June 6, 2011. http://www.itl.nist.gov/div898/strd/general/dataarchive.html.

  • Nelder, J. A., and Wedderburn, R. W. M. (1972). “Generalized Linear Models.” Journal of the Royal Statistical Society, Series A 135:370–384.

  • Nelson, P. R. (1982). “Exact Critical Points for the Analysis of Means.” Communications in Statistics—Theory and Methods 11:699–709.

  • Nelson, P. R. (1991). “Numerical Evaluation of Multivariate Normal Integrals with Correlations $\rho _{lj} = -\alpha _ l\alpha _ j$.” In Frontiers of Statistical Scientific Theory and Industrial Applications: Proceedings of the ICOSCO I Conference, edited by A. Öztürk, and E. C. van der Meulen, 97–114. Columbus, OH: American Sciences Press.

  • Nelson, P. R. (1993). “Additional Uses for the Analysis of Means and Extended Tables of Critical Values.” Technometrics 35:61–71.

  • Ott, E. R. (1967). “Analysis of Means: A Graphical Procedure.” Industrial Quality Control 24:101–109. Reprinted in Journal of Quality Technology 15 (1983): 10–18.

  • Patel, H. I. (1991). “Analysis of Incomplete Data from a Clinical Trial with Repeated Measurements.” Biometrika 78:609–619.

  • Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford: Clarendon Press.

  • Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H., and Rasbash, J. (1998). “Weighting for Unequal Selection Probabilities in Multilevel Models.” Journal of the Royal Statistical Society, Series B 60:23–40.

  • Pinheiro, J. C., and Bates, D. M. (1995). “Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model.” Journal of Computational and Graphical Statistics 4:12–35.

  • Pinheiro, J. C., and Chao, E. C. (2006). “Efficient Laplacian and Adaptive Gaussian Quadrature Algorithms for Multilevel Generalized Linear Mixed Models.” Journal of Computational and Graphical Statistics 15:58–81.

  • Polak, E. (1971). Computational Methods in Optimization. New York: Academic Press.

  • Pothoff, R. F., and Roy, S. N. (1964). “A Generalized Multivariate Analysis of Variance Model Useful Especially for Growth Curve Problems.” Biometrika 51:313–326.

  • Powell, M. J. D. (1977). “Restart Procedures for the Conjugate Gradient Method.” Mathematical Programming 12:241–254.

  • Prasad, N. G. N., and Rao, J. N. K. (1990). “The Estimation of Mean Squared Error of Small-Area Estimators.” Journal of the American Statistical Association 85:163–171.

  • Pringle, R. M., and Rayner, A. A. (1971). Generalized Inverse Matrices with Applications to Statistics. New York: Hafner Publishing.

  • Rabe-Hesketh, S., and Skrondal, A. (2006). “Multilevel Modelling of Complex Survey Data.” Journal of the Royal Statistical Society, Series A 169:805–827.

  • Raudenbush, S. M., Yang, M.-L., and Yosef, M. (2000). “Maximum Likelihood for Generalized Linear Models with Nested Random Effects via Higher-Order, Multivariate Laplace Approximation.” Journal of Computational and Graphical Statistics 9:141–157.

  • Royen, T. (1989). “Generalized Maximum Range Tests for Pairwise Comparisons of Several Populations.” Biometrical Journal 31:905–929.

  • Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression. Cambridge: Cambridge University Press.

  • Saxton, A., ed. (2004). Genetic Analysis of Complex Traits Using SAS. Cary, NC: SAS Institute Inc.

  • Schabenberger, O., and Gregoire, T. G. (1996). “Population-Averaged and Subject-Specific Approaches for Clustered Categorical Data.” Journal of Statistical Computation and Simulation 54:231–253.

  • Schabenberger, O., Gregoire, T. G., and Kong, F. (2000). “Collections of Simple Effects and Their Relationship to Main Effects and Interactions in Factorials.” American Statistician 54:210–214.

  • Schabenberger, O., and Pierce, F. J. (2002). Contemporary Statistical Models for the Plant and Soil Sciences. Boca Raton, FL: CRC Press.

  • Schall, R. (1991). “Estimation in Generalized Linear Models with Random Effects.” Biometrika 78:719–727.

  • Schluchter, M. D., and Elashoff, J. D. (1990). “Small-Sample Adjustments to Tests with Unbalanced Repeated Measures Assuming Several Covariance Structures.” Journal of Statistical Computation and Simulation 37:69–87.

  • Schwarz, G. (1978). “Estimating the Dimension of a Model.” Annals of Statistics 6:461–464.

  • Searle, S. R. (1971). Linear Models. New York: John Wiley & Sons.

  • Self, S. G., and Liang, K.-Y. (1987). “Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions.” Journal of the American Statistical Association 82:605–610.

  • Shaffer, J. P. (1986). “Modified Sequentially Rejective Multiple Test Procedures.” Journal of the American Statistical Association 81:826–831.

  • Shapiro, A. (1988). “Towards a Unified Theory of Inequality Constrained Testing in Multivariate Analysis.” International Statistical Review 56:49–62.

  • Shun, Z. (1997). “Another Look at the Salamander Mating Data: A Modified Laplace Approximation Approach.” Journal of the American Statistical Association 92:341–349.

  • Shun, Z., and McCullagh, P. (1995). “Laplace Approximation of High Dimensional Integrals.” Journal of the Royal Statistical Society, Series B 57:749–760.

  • Silvapulle, M. J., and Sen, P. K. (2004). Constrained Statistical Inference: Order, Inequality, and Shape Constraints. New York: John Wiley & Sons.

  • Silvapulle, M. J., and Silvapulle, P. (1995). “A Score Test against One-Sided Alternatives.” Journal of the American Statistical Association 429:342–349.

  • Stenstrom, F. H. (1940). The Growth of Snapdragons, Stocks, Cinerarias, and Carnations on Six Iowa Soils. Master’s thesis, Iowa State College.

  • Stram, D. O., and Lee, J. W. (1994). “Variance Components Testing in the Longitudinal Mixed Effects Model.” Biometrics 50:1171–1177.

  • Stram, D. O., and Lee, J. W. (1995). “Correction to 'Variance Components Testing in the Longitudinal Mixed Effects Model'.” Biometrics 51:1196.

  • Tamhane, A. C. (1979). “A Comparison of Procedures for Multiple Comparisons of Means with Unequal Variances.” Journal of the American Statistical Association 74:471–480.

  • Thall, P. F., and Vail, S. C. (1990). “Some Covariance Models for Longitudinal Count Data with Overdispersion.” Biometrics 46:657–671.

  • Verbeke, G., and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer.

  • Verbeke, G., and Molenberghs, G. (2003). “The Use of Score Tests for Inference on Variance Components.” Biometrics 59:254–262.

  • Vonesh, E. F. (1996). “A Note on Laplace’s Approximation for Nonlinear Mixed-Effects Models.” Biometrika 83:447–452.

  • Vonesh, E. F., and Chinchilli, V. M. (1997). Linear and Nonlinear Models for the Analysis of Repeated Measurements. New York: Marcel Dekker.

  • Vonesh, E. F., Chinchilli, V. M., and Pu, K. (1996). “Goodness-of-Fit in Generalized Nonlinear Mixed-Effects Models.” Biometrics 52:572–587.

  • Wedderburn, R. W. M. (1974). “Quasi-likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method.” Biometrika 61:439–447.

  • Westfall, P. H. (1997). “Multiple Testing of General Contrasts Using Logical Constraints and Correlations.” Journal of the American Statistical Association 92:299–306.

  • Westfall, P. H., and Tobias, R. D. (2007). “Multiple Testing of General Contrasts: Truncated Closure and the Extended Shaffer-Royen Method.” Journal of the American Statistical Association 478:487–494.

  • Westfall, P. H., Tobias, R. D., Rom, D., Wolfinger, R. D., and Hochberg, Y. (1999). Multiple Comparisons and Multiple Tests Using the SAS System. Cary, NC: SAS Institute Inc.

  • Westfall, P. H., and Young, S. S. (1993). Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment. New York: John Wiley & Sons.

  • White, H. (1980). “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity.” Econometrica 48:817–838.

  • White, H. (1982). “Maximum Likelihood Estimation of Misspecified Models.” Econometrica 50:1–25.

  • Whittle, P. (1954). “On Stationary Processes in the Plane.” Biometrika 41:434–449.

  • Winer, B. J. (1971). Statistical Principles in Experimental Design. 2nd ed. New York: McGraw-Hill.

  • Wolfinger, R. D. (1993). “Laplace’s Approximation for Nonlinear Mixed Models.” Biometrika 80:791–795.

  • Wolfinger, R. D., and O’Connell, M. A. (1993). “Generalized Linear Mixed Models: A Pseudo-likelihood Approach.” Journal of Statistical Computation and Simulation 48:233–243.

  • Wolfinger, R. D., Tobias, R. D., and Sall, J. (1994). “Computing Gaussian Likelihoods and Their Derivatives for General Linear Mixed Models.” SIAM Journal on Scientific Computing 15:1294–1310.

  • Zeger, S. L., and Liang, K.-Y. (1986). “Longitudinal Data Analysis for Discrete and Continuous Outcomes.” Biometrics 42:121–130.