The VARMAX Procedure

Parameter Estimation and Testing on Restrictions

In the previous example, the VARX(1,0) model is written as

\begin{eqnarray*} \mb{y} _{t} = \bdelta + \Theta ^{*}_0\mb{x} _{t} + \Phi _1\mb{y} _{t-1} + \bepsilon _ t \end{eqnarray*}

with

\begin{eqnarray*} \Theta _0^{*} = \left( \begin{array}{rr} \theta ^{*}_{11} & \theta ^{*}_{12} \\ \theta ^{*}_{21} & \theta ^{*}_{22} \\ \theta ^{*}_{31} & \theta ^{*}_{32} \end{array} \right) ~ ~ ~ \Phi _1 = \left( \begin{array}{rrr} \phi _{11} & \phi _{12} & \phi _{13} \\ \phi _{21} & \phi _{22} & \phi _{23} \\ \phi _{31} & \phi _{32} & \phi _{33} \end{array} \right) \end{eqnarray*}

In Figure 42.21 of the preceding section, you can see several insignificant parameters. For example, the coefficients XL0_1_2, AR1_1_2, and AR1_3_2 are insignificant.

The following statements restrict the coefficients of $\theta _{12}^*=\phi _{12}=\phi _{32}=0$ for the VARX(1,0) model.

/*--- Models with Restrictions and Tests ---*/

proc varmax data=grunfeld;
   model y1-y3 = x1 x2 / p=1 print=(estimates);
   restrict XL(0,1,2)=0, AR(1,1,2)=0, AR(1,3,2)=0;
run;

The output in Figure 42.22 shows that three parameters $\theta _{12}^*$, $\phi _{12}$, and $\phi _{32}$ are replaced by the restricted values, zeros, and their standard errors are also zeros to indicate that the parameters are fixed to these values.

Figure 42.22: Parameter Estimation with Restrictions

The VARMAX Procedure

Model Parameter Estimates
Equation Parameter Estimate Standard
Error
t Value Pr > |t| Variable
y1 CONST1 -2.16781 13.13755 -0.17 0.8715 1
  XL0_1_1 1.67592 0.40792 4.11 0.0012 x1(t)
  XL0_1_2 0.00000 0.00000     x2(t)
  AR1_1_1 0.27671 0.17606 1.57 0.1401 y1(t-1)
  AR1_1_2 0.00000 0.00000     y2(t-1)
  AR1_1_3 0.01747 0.03519 0.50 0.6279 y3(t-1)
y2 CONST2 768.14598 224.12735 3.43 0.0045 1
  XL0_2_1 -6.30880 4.85729 -1.30 0.2166 x1(t)
  XL0_2_2 2.65308 0.43840 6.05 0.0001 x2(t)
  AR1_2_1 -2.16968 1.83550 -1.18 0.2584 y1(t-1)
  AR1_2_2 0.10945 0.11751 0.93 0.3686 y2(t-1)
  AR1_2_3 -0.93053 0.41478 -2.24 0.0429 y3(t-1)
y3 CONST3 -19.88165 7.69575 -2.58 0.0227 1
  XL0_3_1 -0.03576 0.20079 -0.18 0.8614 x1(t)
  XL0_3_2 -0.00919 0.01747 -0.53 0.6076 x2(t)
  AR1_3_1 0.96398 0.06907 13.96 0.0001 y1(t-1)
  AR1_3_2 0.00000 0.00000     y2(t-1)
  AR1_3_3 0.93412 0.01473 63.41 0.0001 y3(t-1)



The output in Figure 42.23 shows the estimates of the Lagrangian parameters and their significance. Based on the p-values associated with the Lagrangian parameters, you cannot reject the null hypotheses $\theta _{12}^*=0$, $\phi _{12}=0$, and $\phi _{32}=0$ with the 0.05 significance level.

Figure 42.23: RESTRICT Statement Results

Testing of the Restricted Parameters
Parameter Estimate Standard
Error
t Value Pr > |t| Equation
Restrict0 1.74969 21.44026 0.08 0.9389 XL0_1_2 = 0
Restrict1 30.36254 70.74347 0.43 0.6899 AR1_1_2 = 0
Restrict2 55.42191 164.03075 0.34 0.7524 AR1_3_2 = 0



The TEST statement in the following example tests $\phi _{31}=0$ and $\theta _{12}^*=\phi _{12}=\phi _{32}=0$ for the VARX(1,0) model:

proc varmax data=grunfeld;
   model y1-y3 = x1 x2 / p=1;
   test AR(1,3,1)=0;
   test XL(0,1,2)=0, AR(1,1,2)=0, AR(1,3,2)=0;
run;

The output in Figure 42.24 shows that the first column in the output is the index corresponding to each TEST statement. You can reject the hypothesis test $\phi _{31}=0$ at the 0.05 significance level, but you cannot reject the joint hypothesis test $\theta _{12}^*=\phi _{12}=\phi _{32}=0$ at the 0.05 significance level.

Figure 42.24: TEST Statement Results

The VARMAX Procedure

Testing of the Parameters
Test DF Chi-Square Pr > ChiSq
1 1 150.31 <.0001
2 3 0.34 0.9522