The VARMAX Procedure

Example 42.1 Analysis of United States Economic Variables

Consider the following four-dimensional system of US economic variables. Quarterly data for the years 1954 to 1987 are used (Lütkepohl 1993, Table E.3.).

title 'Analysis of US Economic Variables';
data us_money;
   date=intnx( 'qtr', '01jan54'd, _n_-1 );
   format date yyq. ;
   input y1 y2 y3 y4 @@;
   y1=log(y1);
   y2=log(y2);
   label y1='log(real money stock M1)'
         y2='log(GNP in bil. of 1982 dollars)'
         y3='Discount rate on 91-day T-bills'
         y4='Yield on 20-year Treasury bonds';
datalines;
450.9 1406.8  0.010800000 0.026133333
453.0 1401.2 0.0081333333 0.025233333
459.1 1418.0 0.0087000000 0.024900000

   ... more lines ...   

The following statements plot the series:

proc sgplot data=us_money;
   series x=date y=y1 / lineattrs=(pattern=solid);
   series x=date y=y2 / lineattrs=(pattern=dash);
   yaxis label="Series";
run;

Output 42.1.1 shows the plot of the variables $y1$ and $y2$.

Output 42.1.1: Plot of Data

Plot of Data


The following statements plot the variables $y3$ and $y4$:

proc sgplot data=us_money;
   series x=date y=y3 / lineattrs=(pattern=solid);
   series x=date y=y4 / lineattrs=(pattern=dash);
   yaxis label="Series";
run;

Output 42.1.2 shows the plot of the variables $y3$ and $y4$.

Output 42.1.2: Plot of Data

Plot of Data


The following statements perform the Dickey-Fuller test for stationarity, the Johansen cointegrated test integrated order 2, and the exogeneity test. The VECM(2) is fit to the data.

proc varmax data=us_money;
   id date interval=qtr;
   model y1-y4 / p=2 lagmax=6 dftest
                 print=(iarr(3) estimates diagnose)
                 cointtest=(johansen=(iorder=2));
   cointeg rank=1 normalize=y1 exogeneity;
run;

From the outputs shown in Output 42.1.5, you can see that the series has unit roots and is cointegrated in rank 1 with integrated order 1. The fitted VECM(2) is given as

\begin{eqnarray*} {\Delta \mb{y} }_ t & =& \left( \begin{array}{r} 0.0408 \\ 0.0860\\ 0.0052 \\ -0.0144 \\ \end{array} \right) + \left( \begin{array}{rrrr} -0.0140 & 0.0065 & -0.2026 & 0.1306 \\ -0.0281 & 0.0131 & -0.4080 & 0.2630 \\ -0.0022 & 0.0010 & -0.0312 & 0.0201 \\ 0.0051 & -0.0024 & 0.0741 & -0.0477 \\ \end{array} \right) \mb{y} _{t-1} \\ & & + \left( \begin{array}{rrrr} 0.3460 & 0.0913 & -0.3535 & -0.9690 \\ 0.0994 & 0.0379 & 0.2390 & 0.2866 \\ 0.1812 & 0.0786 & 0.0223 & 0.4051 \\ 0.0322 & 0.0496 & -0.0329 & 0.1857 \\ \end{array} \right) \Delta \mb{y} _{t-1} + \bepsilon _ t \end{eqnarray*}

The $\Delta $ prefixed to a variable name implies differencing.

Output 42.1.3 through Output 42.1.16 show the details. Output 42.1.3 shows the descriptive statistics.

Output 42.1.3: Descriptive Statistics

Analysis of US Economic Variables

The VARMAX Procedure

Number of Observations 136
Number of Pairwise Missing 0

Simple Summary Statistics
Variable Type N Mean Standard
Deviation
Min Max Label
y1 Dependent 136 6.21295 0.07924 6.10278 6.45331 log(real money stock M1)
y2 Dependent 136 7.77890 0.30110 7.24508 8.27461 log(GNP in bil. of 1982 dollars)
y3 Dependent 136 0.05608 0.03109 0.00813 0.15087 Discount rate on 91-day T-bills
y4 Dependent 136 0.06458 0.02927 0.02490 0.13600 Yield on 20-year Treasury bonds



Output 42.1.4 shows the output for Dickey-Fuller tests for the nonstationarity of each series. The null hypothesis is that there exists a unit root. All series have a unit root.

Output 42.1.4: Unit Root Tests

Unit Root Test
Variable Type Rho Pr < Rho Tau Pr < Tau
y1 Zero Mean 0.05 0.6934 1.14 0.9343
  Single Mean -2.97 0.6572 -0.76 0.8260
  Trend -5.91 0.7454 -1.34 0.8725
y2 Zero Mean 0.13 0.7124 5.14 0.9999
  Single Mean -0.43 0.9309 -0.79 0.8176
  Trend -9.21 0.4787 -2.16 0.5063
y3 Zero Mean -1.28 0.4255 -0.69 0.4182
  Single Mean -8.86 0.1700 -2.27 0.1842
  Trend -18.97 0.0742 -2.86 0.1803
y4 Zero Mean 0.40 0.7803 0.45 0.8100
  Single Mean -2.79 0.6790 -1.29 0.6328
  Trend -12.12 0.2923 -2.33 0.4170



The Johansen cointegration rank test shows whether the series is integrated order either 1 or 2 as shown in Output 42.1.5. The last two columns in Output 42.1.5 explain the cointegration rank test with integrated order 1. The results indicate that there is a cointegrated relationship with cointegration rank 1 with respect to the 0.05 significance level because the test statistic for the null hypothesis H0: $r=0$ is 55.9633 and its corresponding p-value is 0.0072, less than 0.05 (indicating that H0: $r=0$ should be rejected), and the test statistic for the null hypothesis H0: $r=1$ is 20.6542 and its corresponding p-value is 0.3775, greater than 0.05 (indicating that H0: $r=1$ cannot be rejected). Now, look at the row associated with $r=1$. All p-values of the tests for the null hypothesis that the series are integrated order 2 are zeros, less than 0.05 significance level (indicating that the null hypothesis should be rejected).

Output 42.1.5: Cointegration Rank Test

Cointegration Rank Test for I(2)
r\k-r-s 4 3 2 1 Trace
of I(1)
Pr > Trace
of I(1)
0 384.6090 214.3790 107.9378 37.0252 55.9633 0.0072
Pr > Trace of I(2) 0.0000 0.0000 0.0000 0.0000    
1   219.6239 89.2151 27.3261 20.6542 0.3775
Pr > Trace of I(2)   0.0000 0.0000 0.0000    
2     73.6178 22.1328 2.6477 0.9803
Pr > Trace of I(2)     0.0000 0.0000    
3       38.2943 0.0149 0.9031
Pr > Trace of I(2)       0.0000    



Output 42.1.6 shows the estimates of the long-run parameter, $\bbeta $, and the adjustment coefficient, $\balpha $.

Output 42.1.6: Cointegration Rank Test, Continued

Beta
Variable 1 2 3 4
y1 1.00000 1.00000 1.00000 1.00000
y2 -0.46458 -0.63174 -0.69996 -0.16140
y3 14.51619 -1.29864 1.37007 -0.61806
y4 -9.35520 7.53672 2.47901 1.43731

Alpha
Variable 1 2 3 4
y1 -0.01396 0.01396 -0.01119 0.00008
y2 -0.02811 -0.02739 -0.00032 0.00076
y3 -0.00215 -0.04967 -0.00183 -0.00072
y4 0.00510 -0.02514 -0.00220 0.00016



Output 42.1.7 shows the estimates $\bm {\eta }$ and $\bxi $.

Output 42.1.7: Cointegration Rank Test, Continued

Eta
Variable 1 2 3 4
y1 52.74907 41.74502 -20.80403 55.77415
y2 -49.10609 -9.40081 98.87199 22.56416
y3 68.29674 -144.83173 -27.35953 15.51142
y4 121.25932 271.80496 85.85156 -130.11599

Xi
Variable 1 2 3 4
y1 -0.00842 -0.00052 -0.00208 -0.00250
y2 0.00141 0.00213 -0.00736 -0.00058
y3 -0.00445 0.00541 -0.00150 0.00310
y4 -0.00211 -0.00064 -0.00130 0.00197



Output 42.1.8 shows that the VECM(2) is fit to the data. The RANK=1 option in the COINTEG statement produces the estimates of the long-run parameter, $\bbeta $, and the adjustment coefficient, $\balpha $.

Output 42.1.8: Parameter Estimates

Analysis of US Economic Variables

The VARMAX Procedure

Type of Model VECM(2)
Estimation Method Maximum Likelihood Estimation
Cointegrated Rank 1

Beta
Variable 1
y1 1.00000
y2 -0.46458
y3 14.51619
y4 -9.35520

Alpha
Variable 1
y1 -0.01396
y2 -0.02811
y3 -0.00215
y4 0.00510



Output 42.1.9 shows the parameter estimates in terms of the constant, the lag 1 coefficients ($\mb{y} _{t-1}$) that are contained in the $\alpha \beta ’$ estimates, and the coefficients that are associated with the lag 1 first differences ($\Delta \mb{y} _{t-1}$).

Output 42.1.9: Parameter Estimates, Continued

Constant
Variable Constant
y1 0.04076
y2 0.08595
y3 0.00518
y4 -0.01438

Parameter Alpha * Beta' Estimates
Variable y1 y2 y3 y4
y1 -0.01396 0.00648 -0.20263 0.13059
y2 -0.02811 0.01306 -0.40799 0.26294
y3 -0.00215 0.00100 -0.03121 0.02011
y4 0.00510 -0.00237 0.07407 -0.04774

AR Coefficients of Differenced Lag
DIF Lag Variable y1 y2 y3 y4
1 y1 0.34603 0.09131 -0.35351 -0.96895
  y2 0.09936 0.03791 0.23900 0.28661
  y3 0.18118 0.07859 0.02234 0.40508
  y4 0.03222 0.04961 -0.03292 0.18568



Output 42.1.10 through Output 42.1.12 show the parameter estimates and their significance.

Output 42.1.10: Parameter Estimates, Continued

Model Parameter Estimates
Equation Parameter Estimate Standard
Error
t Value Pr > |t| Variable
D_y1 CONST1 0.04076 0.01418 2.87 0.0048 1
  AR1_1_1 -0.01396 0.00495 -2.82 0.0056 y1(t-1)
  AR1_1_2 0.00648 0.00230 2.82 0.0056 y2(t-1)
  AR1_1_3 -0.20263 0.07191 -2.82 0.0056 y3(t-1)
  AR1_1_4 0.13059 0.04634 2.82 0.0056 y4(t-1)
  AR2_1_1 0.34603 0.06414 5.39 <.0001 D_y1(t-1)
  AR2_1_2 0.09131 0.07334 1.25 0.2154 D_y2(t-1)
  AR2_1_3 -0.35351 0.11024 -3.21 0.0017 D_y3(t-1)
  AR2_1_4 -0.96895 0.20737 -4.67 <.0001 D_y4(t-1)
D_y2 CONST2 0.08595 0.01679 5.12 <.0001 1
  AR1_2_1 -0.02811 0.00586 -4.79 <.0001 y1(t-1)
  AR1_2_2 0.01306 0.00272 4.79 <.0001 y2(t-1)
  AR1_2_3 -0.40799 0.08514 -4.79 <.0001 y3(t-1)
  AR1_2_4 0.26294 0.05487 4.79 <.0001 y4(t-1)
  AR2_2_1 0.09936 0.07594 1.31 0.1932 D_y1(t-1)
  AR2_2_2 0.03791 0.08683 0.44 0.6632 D_y2(t-1)
  AR2_2_3 0.23900 0.13052 1.83 0.0695 D_y3(t-1)
  AR2_2_4 0.28661 0.24552 1.17 0.2453 D_y4(t-1)
D_y3 CONST3 0.00518 0.01608 0.32 0.7476 1
  AR1_3_1 -0.00215 0.00562 -0.38 0.7024 y1(t-1)
  AR1_3_2 0.00100 0.00261 0.38 0.7024 y2(t-1)
  AR1_3_3 -0.03121 0.08151 -0.38 0.7024 y3(t-1)
  AR1_3_4 0.02011 0.05253 0.38 0.7024 y4(t-1)
  AR2_3_1 0.18118 0.07271 2.49 0.0140 D_y1(t-1)
  AR2_3_2 0.07859 0.08313 0.95 0.3463 D_y2(t-1)
  AR2_3_3 0.02234 0.12496 0.18 0.8584 D_y3(t-1)
  AR2_3_4 0.40508 0.23506 1.72 0.0873 D_y4(t-1)
D_y4 CONST4 -0.01438 0.00803 -1.79 0.0758 1
  AR1_4_1 0.00510 0.00281 1.82 0.0713 y1(t-1)
  AR1_4_2 -0.00237 0.00130 -1.82 0.0713 y2(t-1)
  AR1_4_3 0.07407 0.04072 1.82 0.0713 y3(t-1)
  AR1_4_4 -0.04774 0.02624 -1.82 0.0713 y4(t-1)
  AR2_4_1 0.03222 0.03632 0.89 0.3768 D_y1(t-1)
  AR2_4_2 0.04961 0.04153 1.19 0.2345 D_y2(t-1)
  AR2_4_3 -0.03292 0.06243 -0.53 0.5990 D_y3(t-1)
  AR2_4_4 0.18568 0.11744 1.58 0.1164 D_y4(t-1)



Output 42.1.11: Parameter Estimates, Continued

Alpha and Beta Parameter Estimates
Equation Parameter Estimate Standard
Error
t Value Pr > |t| Variable
D_y1 ALPHA1_1 -0.01396 0.00495 -2.82 0.0056 Beta[,1]'*_DEP_(t-1)
  BETA1_1 1.00000       y1(t-1)
D_y2 ALPHA2_1 -0.02811 0.00586 -4.79 <.0001 Beta[,1]'*_DEP_(t-1)
  BETA2_1 -0.46458       y2(t-1)
D_y3 ALPHA3_1 -0.00215 0.00562 -0.38 0.7024 Beta[,1]'*_DEP_(t-1)
  BETA3_1 14.51619       y3(t-1)
D_y4 ALPHA4_1 0.00510 0.00281 1.82 0.0713 Beta[,1]'*_DEP_(t-1)
  BETA4_1 -9.35520       y4(t-1)



Output 42.1.12: Parameter Estimates, Continued

Covariance Parameter Estimates
Parameter Estimate Standard
Error
t Value Pr > |t|
COV1_1 0.00005 0.00001 8.19 <.0001
COV1_2 0.00001 0.00001 2.78 0.0062
COV2_2 0.00007 0.00001 8.19 <.0001
COV1_3 -0.00001 0.00001 -1.60 0.1118
COV2_3 0.00002 0.00001 2.71 0.0077
COV3_3 0.00007 0.00001 8.19 <.0001
COV1_4 -0.00000 0.00000 -1.31 0.1936
COV2_4 0.00001 0.00000 3.29 0.0013
COV3_4 0.00002 0.00000 6.67 <.0001
COV4_4 0.00002 0.00000 8.19 <.0001



Output 42.1.13 shows the innovation covariance matrix estimates, the log-likelihood, the various information criteria results, and the tests for white noise residuals. According to the Portmanteau test results, the residuals have significant correlations at lag 2 and 3, indicating that a VECM(3) model might be a better fit than the VECM(2) model.

Output 42.1.13: Diagnostic Checks

Covariances of Innovations
Variable y1 y2 y3 y4
y1 0.00005 0.00001 -0.00001 -0.00000
y2 0.00001 0.00007 0.00002 0.00001
y3 -0.00001 0.00002 0.00007 0.00002
y4 -0.00000 0.00001 0.00002 0.00002

Log-likelihood 2479.23

Information Criteria
AICC -4859
HQC -4844.07
AIC -4886.46
SBC -4782.14
FPEC 2.23E-18

Schematic Representation of Cross Correlations
of Residuals
Variable/Lag 0 1 2 3 4 5 6
y1 ++.. .... ++.. .... +... ..-- ....
y2 ++++ .... .... .... .... .... ....
y3 .+++ .... +.-. ..++ -... .... ....
y4 .+++ .... .... ..+. .... .... ....
+ is > 2*std error,  - is < -2*std error,  . is between

Portmanteau Test for Cross Correlations
of Residuals
Up To Lag DF Chi-Square Pr > ChiSq
3 16 53.90 <.0001
4 32 74.03 <.0001
5 48 103.08 <.0001
6 64 116.94 <.0001



Output 42.1.14 describes how well each univariate equation fits the data. The residuals for $y3$ and $y4$ differ from normality. Except for the residuals for $y3$, there are no AR effects on other residuals. Except for the residuals for $y4$, there are no ARCH effects on other residuals.

Output 42.1.14: Diagnostic Checks, Continued

Univariate Model ANOVA Diagnostics
Variable R-Square Standard
Deviation
F Value Pr > F
y1 0.6754 0.00712 32.51 <.0001
y2 0.3070 0.00843 6.92 <.0001
y3 0.1328 0.00807 2.39 0.0196
y4 0.0831 0.00403 1.42 0.1963

Univariate Model White Noise Diagnostics
Variable Durbin
Watson
Normality ARCH
Chi-Square Pr > ChiSq F Value Pr > F
y1 2.13418 7.19 0.0275 1.62 0.2053
y2 2.04003 1.20 0.5483 1.23 0.2697
y3 1.86892 253.76 <.0001 1.78 0.1847
y4 1.98440 105.21 <.0001 21.01 <.0001

Univariate Model AR Diagnostics
Variable AR1 AR2 AR3 AR4
F Value Pr > F F Value Pr > F F Value Pr > F F Value Pr > F
y1 0.68 0.4126 2.98 0.0542 2.01 0.1154 2.48 0.0473
y2 0.05 0.8185 0.12 0.8842 0.41 0.7453 0.30 0.8762
y3 0.56 0.4547 2.86 0.0610 4.83 0.0032 3.71 0.0069
y4 0.01 0.9340 0.16 0.8559 1.21 0.3103 0.95 0.4358



The PRINT=(IARR) option provides the VAR(2) representation in Output 42.1.15.

Output 42.1.15: Infinite Order AR Representation

Infinite Order AR Representation
Lag Variable y1 y2 y3 y4
1 y1 1.33208 0.09780 -0.55614 -0.83836
  y2 0.07125 1.05096 -0.16899 0.54955
  y3 0.17903 0.07959 0.99113 0.42520
  y4 0.03732 0.04724 0.04116 1.13795
2 y1 -0.34603 -0.09131 0.35351 0.96895
  y2 -0.09936 -0.03791 -0.23900 -0.28661
  y3 -0.18118 -0.07859 -0.02234 -0.40508
  y4 -0.03222 -0.04961 0.03292 -0.18568
3 y1 0.00000 0.00000 0.00000 0.00000
  y2 0.00000 0.00000 0.00000 0.00000
  y3 0.00000 0.00000 0.00000 0.00000
  y4 0.00000 0.00000 0.00000 0.00000



Output 42.1.16 shows whether each variable is the weak exogeneity of other variables. The variable $y1$ is not the weak exogeneity of other variables, $y2$, $y3$, and $y4$; the variable $y2$ is not the weak exogeneity of other variables, $y1$, $y3$, and $y4$; the variable $y3$ and $y4$ are the weak exogeneity of other variables.

Output 42.1.16: Weak Exogeneity Test

Testing Weak Exogeneity of
Each Variables
Variable DF Chi-Square Pr > ChiSq
y1 1 6.55 0.0105
y2 1 12.54 0.0004
y3 1 0.09 0.7695
y4 1 1.81 0.1786