Consider the following four-dimensional system of US economic variables. Quarterly data for the years 1954 to 1987 are used (Lütkepohl 1993, Table E.3.).
title 'Analysis of US Economic Variables'; data us_money; date=intnx( 'qtr', '01jan54'd, _n_-1 ); format date yyq. ; input y1 y2 y3 y4 @@; y1=log(y1); y2=log(y2); label y1='log(real money stock M1)' y2='log(GNP in bil. of 1982 dollars)' y3='Discount rate on 91-day T-bills' y4='Yield on 20-year Treasury bonds'; datalines; 450.9 1406.8 0.010800000 0.026133333 453.0 1401.2 0.0081333333 0.025233333 459.1 1418.0 0.0087000000 0.024900000 ... more lines ...
The following statements plot the series:
proc sgplot data=us_money; series x=date y=y1 / lineattrs=(pattern=solid); series x=date y=y2 / lineattrs=(pattern=dash); yaxis label="Series"; run;
Output 42.1.1 shows the plot of the variables and .
Output 42.1.1: Plot of Data
The following statements plot the variables and :
proc sgplot data=us_money; series x=date y=y3 / lineattrs=(pattern=solid); series x=date y=y4 / lineattrs=(pattern=dash); yaxis label="Series"; run;
Output 42.1.2 shows the plot of the variables and .
Output 42.1.2: Plot of Data
The following statements perform the Dickey-Fuller test for stationarity, the Johansen cointegrated test integrated order 2, and the exogeneity test. The VECM(2) is fit to the data.
proc varmax data=us_money; id date interval=qtr; model y1-y4 / p=2 lagmax=6 dftest print=(iarr(3) estimates diagnose) cointtest=(johansen=(iorder=2)); cointeg rank=1 normalize=y1 exogeneity; run;
From the outputs shown in Output 42.1.5, you can see that the series has unit roots and is cointegrated in rank 1 with integrated order 1. The fitted VECM(2) is given as
The prefixed to a variable name implies differencing.
Output 42.1.3 through Output 42.1.16 show the details. Output 42.1.3 shows the descriptive statistics.
Output 42.1.3: Descriptive Statistics
Analysis of US Economic Variables |
Number of Observations | 136 |
---|---|
Number of Pairwise Missing | 0 |
Simple Summary Statistics | |||||||
---|---|---|---|---|---|---|---|
Variable | Type | N | Mean | Standard Deviation |
Min | Max | Label |
y1 | Dependent | 136 | 6.21295 | 0.07924 | 6.10278 | 6.45331 | log(real money stock M1) |
y2 | Dependent | 136 | 7.77890 | 0.30110 | 7.24508 | 8.27461 | log(GNP in bil. of 1982 dollars) |
y3 | Dependent | 136 | 0.05608 | 0.03109 | 0.00813 | 0.15087 | Discount rate on 91-day T-bills |
y4 | Dependent | 136 | 0.06458 | 0.02927 | 0.02490 | 0.13600 | Yield on 20-year Treasury bonds |
Output 42.1.4 shows the output for Dickey-Fuller tests for the nonstationarity of each series. The null hypothesis is that there exists a unit root. All series have a unit root.
Output 42.1.4: Unit Root Tests
Unit Root Test | |||||
---|---|---|---|---|---|
Variable | Type | Rho | Pr < Rho | Tau | Pr < Tau |
y1 | Zero Mean | 0.05 | 0.6934 | 1.14 | 0.9343 |
Single Mean | -2.97 | 0.6572 | -0.76 | 0.8260 | |
Trend | -5.91 | 0.7454 | -1.34 | 0.8725 | |
y2 | Zero Mean | 0.13 | 0.7124 | 5.14 | 0.9999 |
Single Mean | -0.43 | 0.9309 | -0.79 | 0.8176 | |
Trend | -9.21 | 0.4787 | -2.16 | 0.5063 | |
y3 | Zero Mean | -1.28 | 0.4255 | -0.69 | 0.4182 |
Single Mean | -8.86 | 0.1700 | -2.27 | 0.1842 | |
Trend | -18.97 | 0.0742 | -2.86 | 0.1803 | |
y4 | Zero Mean | 0.40 | 0.7803 | 0.45 | 0.8100 |
Single Mean | -2.79 | 0.6790 | -1.29 | 0.6328 | |
Trend | -12.12 | 0.2923 | -2.33 | 0.4170 |
The Johansen cointegration rank test shows whether the series is integrated order either 1 or 2 as shown in Output 42.1.5. The last two columns in Output 42.1.5 explain the cointegration rank test with integrated order 1. The results indicate that there is a cointegrated relationship with cointegration rank 1 with respect to the 0.05 significance level because the test statistic for the null hypothesis H0: is 55.9633 and its corresponding p-value is 0.0072, less than 0.05 (indicating that H0: should be rejected), and the test statistic for the null hypothesis H0: is 20.6542 and its corresponding p-value is 0.3775, greater than 0.05 (indicating that H0: cannot be rejected). Now, look at the row associated with . All p-values of the tests for the null hypothesis that the series are integrated order 2 are zeros, less than 0.05 significance level (indicating that the null hypothesis should be rejected).
Output 42.1.5: Cointegration Rank Test
Cointegration Rank Test for I(2) | ||||||
---|---|---|---|---|---|---|
r\k-r-s | 4 | 3 | 2 | 1 | Trace of I(1) |
Pr > Trace of I(1) |
0 | 384.6090 | 214.3790 | 107.9378 | 37.0252 | 55.9633 | 0.0072 |
Pr > Trace of I(2) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | ||
1 | 219.6239 | 89.2151 | 27.3261 | 20.6542 | 0.3775 | |
Pr > Trace of I(2) | 0.0000 | 0.0000 | 0.0000 | |||
2 | 73.6178 | 22.1328 | 2.6477 | 0.9803 | ||
Pr > Trace of I(2) | 0.0000 | 0.0000 | ||||
3 | 38.2943 | 0.0149 | 0.9031 | |||
Pr > Trace of I(2) | 0.0000 |
Output 42.1.6 shows the estimates of the long-run parameter, , and the adjustment coefficient, .
Output 42.1.6: Cointegration Rank Test, Continued
Beta | ||||
---|---|---|---|---|
Variable | 1 | 2 | 3 | 4 |
y1 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
y2 | -0.46458 | -0.63174 | -0.69996 | -0.16140 |
y3 | 14.51619 | -1.29864 | 1.37007 | -0.61806 |
y4 | -9.35520 | 7.53672 | 2.47901 | 1.43731 |
Alpha | ||||
---|---|---|---|---|
Variable | 1 | 2 | 3 | 4 |
y1 | -0.01396 | 0.01396 | -0.01119 | 0.00008 |
y2 | -0.02811 | -0.02739 | -0.00032 | 0.00076 |
y3 | -0.00215 | -0.04967 | -0.00183 | -0.00072 |
y4 | 0.00510 | -0.02514 | -0.00220 | 0.00016 |
Output 42.1.7 shows the estimates and .
Output 42.1.7: Cointegration Rank Test, Continued
Eta | ||||
---|---|---|---|---|
Variable | 1 | 2 | 3 | 4 |
y1 | 52.74907 | 41.74502 | -20.80403 | 55.77415 |
y2 | -49.10609 | -9.40081 | 98.87199 | 22.56416 |
y3 | 68.29674 | -144.83173 | -27.35953 | 15.51142 |
y4 | 121.25932 | 271.80496 | 85.85156 | -130.11599 |
Xi | ||||
---|---|---|---|---|
Variable | 1 | 2 | 3 | 4 |
y1 | -0.00842 | -0.00052 | -0.00208 | -0.00250 |
y2 | 0.00141 | 0.00213 | -0.00736 | -0.00058 |
y3 | -0.00445 | 0.00541 | -0.00150 | 0.00310 |
y4 | -0.00211 | -0.00064 | -0.00130 | 0.00197 |
Output 42.1.8 shows that the VECM(2) is fit to the data. The RANK=1 option in the COINTEG statement produces the estimates of the long-run parameter, , and the adjustment coefficient, .
Output 42.1.8: Parameter Estimates
Output 42.1.9 shows the parameter estimates in terms of the constant, the lag 1 coefficients () that are contained in the estimates, and the coefficients that are associated with the lag 1 first differences ().
Output 42.1.9: Parameter Estimates, Continued
Constant | |
---|---|
Variable | Constant |
y1 | 0.04076 |
y2 | 0.08595 |
y3 | 0.00518 |
y4 | -0.01438 |
Parameter Alpha * Beta' Estimates | ||||
---|---|---|---|---|
Variable | y1 | y2 | y3 | y4 |
y1 | -0.01396 | 0.00648 | -0.20263 | 0.13059 |
y2 | -0.02811 | 0.01306 | -0.40799 | 0.26294 |
y3 | -0.00215 | 0.00100 | -0.03121 | 0.02011 |
y4 | 0.00510 | -0.00237 | 0.07407 | -0.04774 |
AR Coefficients of Differenced Lag | |||||
---|---|---|---|---|---|
DIF Lag | Variable | y1 | y2 | y3 | y4 |
1 | y1 | 0.34603 | 0.09131 | -0.35351 | -0.96895 |
y2 | 0.09936 | 0.03791 | 0.23900 | 0.28661 | |
y3 | 0.18118 | 0.07859 | 0.02234 | 0.40508 | |
y4 | 0.03222 | 0.04961 | -0.03292 | 0.18568 |
Output 42.1.10 through Output 42.1.12 show the parameter estimates and their significance.
Output 42.1.10: Parameter Estimates, Continued
Model Parameter Estimates | ||||||
---|---|---|---|---|---|---|
Equation | Parameter | Estimate | Standard Error |
t Value | Pr > |t| | Variable |
D_y1 | CONST1 | 0.04076 | 0.01418 | 2.87 | 0.0048 | 1 |
AR1_1_1 | -0.01396 | 0.00495 | -2.82 | 0.0056 | y1(t-1) | |
AR1_1_2 | 0.00648 | 0.00230 | 2.82 | 0.0056 | y2(t-1) | |
AR1_1_3 | -0.20263 | 0.07191 | -2.82 | 0.0056 | y3(t-1) | |
AR1_1_4 | 0.13059 | 0.04634 | 2.82 | 0.0056 | y4(t-1) | |
AR2_1_1 | 0.34603 | 0.06414 | 5.39 | <.0001 | D_y1(t-1) | |
AR2_1_2 | 0.09131 | 0.07334 | 1.25 | 0.2154 | D_y2(t-1) | |
AR2_1_3 | -0.35351 | 0.11024 | -3.21 | 0.0017 | D_y3(t-1) | |
AR2_1_4 | -0.96895 | 0.20737 | -4.67 | <.0001 | D_y4(t-1) | |
D_y2 | CONST2 | 0.08595 | 0.01679 | 5.12 | <.0001 | 1 |
AR1_2_1 | -0.02811 | 0.00586 | -4.79 | <.0001 | y1(t-1) | |
AR1_2_2 | 0.01306 | 0.00272 | 4.79 | <.0001 | y2(t-1) | |
AR1_2_3 | -0.40799 | 0.08514 | -4.79 | <.0001 | y3(t-1) | |
AR1_2_4 | 0.26294 | 0.05487 | 4.79 | <.0001 | y4(t-1) | |
AR2_2_1 | 0.09936 | 0.07594 | 1.31 | 0.1932 | D_y1(t-1) | |
AR2_2_2 | 0.03791 | 0.08683 | 0.44 | 0.6632 | D_y2(t-1) | |
AR2_2_3 | 0.23900 | 0.13052 | 1.83 | 0.0695 | D_y3(t-1) | |
AR2_2_4 | 0.28661 | 0.24552 | 1.17 | 0.2453 | D_y4(t-1) | |
D_y3 | CONST3 | 0.00518 | 0.01608 | 0.32 | 0.7476 | 1 |
AR1_3_1 | -0.00215 | 0.00562 | -0.38 | 0.7024 | y1(t-1) | |
AR1_3_2 | 0.00100 | 0.00261 | 0.38 | 0.7024 | y2(t-1) | |
AR1_3_3 | -0.03121 | 0.08151 | -0.38 | 0.7024 | y3(t-1) | |
AR1_3_4 | 0.02011 | 0.05253 | 0.38 | 0.7024 | y4(t-1) | |
AR2_3_1 | 0.18118 | 0.07271 | 2.49 | 0.0140 | D_y1(t-1) | |
AR2_3_2 | 0.07859 | 0.08313 | 0.95 | 0.3463 | D_y2(t-1) | |
AR2_3_3 | 0.02234 | 0.12496 | 0.18 | 0.8584 | D_y3(t-1) | |
AR2_3_4 | 0.40508 | 0.23506 | 1.72 | 0.0873 | D_y4(t-1) | |
D_y4 | CONST4 | -0.01438 | 0.00803 | -1.79 | 0.0758 | 1 |
AR1_4_1 | 0.00510 | 0.00281 | 1.82 | 0.0713 | y1(t-1) | |
AR1_4_2 | -0.00237 | 0.00130 | -1.82 | 0.0713 | y2(t-1) | |
AR1_4_3 | 0.07407 | 0.04072 | 1.82 | 0.0713 | y3(t-1) | |
AR1_4_4 | -0.04774 | 0.02624 | -1.82 | 0.0713 | y4(t-1) | |
AR2_4_1 | 0.03222 | 0.03632 | 0.89 | 0.3768 | D_y1(t-1) | |
AR2_4_2 | 0.04961 | 0.04153 | 1.19 | 0.2345 | D_y2(t-1) | |
AR2_4_3 | -0.03292 | 0.06243 | -0.53 | 0.5990 | D_y3(t-1) | |
AR2_4_4 | 0.18568 | 0.11744 | 1.58 | 0.1164 | D_y4(t-1) |
Output 42.1.11: Parameter Estimates, Continued
Alpha and Beta Parameter Estimates | ||||||
---|---|---|---|---|---|---|
Equation | Parameter | Estimate | Standard Error |
t Value | Pr > |t| | Variable |
D_y1 | ALPHA1_1 | -0.01396 | 0.00495 | -2.82 | 0.0056 | Beta[,1]'*_DEP_(t-1) |
BETA1_1 | 1.00000 | y1(t-1) | ||||
D_y2 | ALPHA2_1 | -0.02811 | 0.00586 | -4.79 | <.0001 | Beta[,1]'*_DEP_(t-1) |
BETA2_1 | -0.46458 | y2(t-1) | ||||
D_y3 | ALPHA3_1 | -0.00215 | 0.00562 | -0.38 | 0.7024 | Beta[,1]'*_DEP_(t-1) |
BETA3_1 | 14.51619 | y3(t-1) | ||||
D_y4 | ALPHA4_1 | 0.00510 | 0.00281 | 1.82 | 0.0713 | Beta[,1]'*_DEP_(t-1) |
BETA4_1 | -9.35520 | y4(t-1) |
Output 42.1.12: Parameter Estimates, Continued
Covariance Parameter Estimates | ||||
---|---|---|---|---|
Parameter | Estimate | Standard Error |
t Value | Pr > |t| |
COV1_1 | 0.00005 | 0.00001 | 8.19 | <.0001 |
COV1_2 | 0.00001 | 0.00001 | 2.78 | 0.0062 |
COV2_2 | 0.00007 | 0.00001 | 8.19 | <.0001 |
COV1_3 | -0.00001 | 0.00001 | -1.60 | 0.1118 |
COV2_3 | 0.00002 | 0.00001 | 2.71 | 0.0077 |
COV3_3 | 0.00007 | 0.00001 | 8.19 | <.0001 |
COV1_4 | -0.00000 | 0.00000 | -1.31 | 0.1936 |
COV2_4 | 0.00001 | 0.00000 | 3.29 | 0.0013 |
COV3_4 | 0.00002 | 0.00000 | 6.67 | <.0001 |
COV4_4 | 0.00002 | 0.00000 | 8.19 | <.0001 |
Output 42.1.13 shows the innovation covariance matrix estimates, the log-likelihood, the various information criteria results, and the tests for white noise residuals. According to the Portmanteau test results, the residuals have significant correlations at lag 2 and 3, indicating that a VECM(3) model might be a better fit than the VECM(2) model.
Output 42.1.13: Diagnostic Checks
Covariances of Innovations | ||||
---|---|---|---|---|
Variable | y1 | y2 | y3 | y4 |
y1 | 0.00005 | 0.00001 | -0.00001 | -0.00000 |
y2 | 0.00001 | 0.00007 | 0.00002 | 0.00001 |
y3 | -0.00001 | 0.00002 | 0.00007 | 0.00002 |
y4 | -0.00000 | 0.00001 | 0.00002 | 0.00002 |
Log-likelihood | 2479.23 |
---|
Information Criteria | |
---|---|
AICC | -4859 |
HQC | -4844.07 |
AIC | -4886.46 |
SBC | -4782.14 |
FPEC | 2.23E-18 |
Schematic Representation of Cross Correlations of Residuals |
|||||||
---|---|---|---|---|---|---|---|
Variable/Lag | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1 | ++.. | .... | ++.. | .... | +... | ..-- | .... |
y2 | ++++ | .... | .... | .... | .... | .... | .... |
y3 | .+++ | .... | +.-. | ..++ | -... | .... | .... |
y4 | .+++ | .... | .... | ..+. | .... | .... | .... |
+ is > 2*std error, - is < -2*std error, . is between |
Portmanteau Test for Cross Correlations of Residuals |
|||
---|---|---|---|
Up To Lag | DF | Chi-Square | Pr > ChiSq |
3 | 16 | 53.90 | <.0001 |
4 | 32 | 74.03 | <.0001 |
5 | 48 | 103.08 | <.0001 |
6 | 64 | 116.94 | <.0001 |
Output 42.1.14 describes how well each univariate equation fits the data. The residuals for and differ from normality. Except for the residuals for , there are no AR effects on other residuals. Except for the residuals for , there are no ARCH effects on other residuals.
Output 42.1.14: Diagnostic Checks, Continued
Univariate Model ANOVA Diagnostics | ||||
---|---|---|---|---|
Variable | R-Square | Standard Deviation |
F Value | Pr > F |
y1 | 0.6754 | 0.00712 | 32.51 | <.0001 |
y2 | 0.3070 | 0.00843 | 6.92 | <.0001 |
y3 | 0.1328 | 0.00807 | 2.39 | 0.0196 |
y4 | 0.0831 | 0.00403 | 1.42 | 0.1963 |
Univariate Model White Noise Diagnostics | |||||
---|---|---|---|---|---|
Variable | Durbin Watson |
Normality | ARCH | ||
Chi-Square | Pr > ChiSq | F Value | Pr > F | ||
y1 | 2.13418 | 7.19 | 0.0275 | 1.62 | 0.2053 |
y2 | 2.04003 | 1.20 | 0.5483 | 1.23 | 0.2697 |
y3 | 1.86892 | 253.76 | <.0001 | 1.78 | 0.1847 |
y4 | 1.98440 | 105.21 | <.0001 | 21.01 | <.0001 |
Univariate Model AR Diagnostics | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | AR1 | AR2 | AR3 | AR4 | ||||
F Value | Pr > F | F Value | Pr > F | F Value | Pr > F | F Value | Pr > F | |
y1 | 0.68 | 0.4126 | 2.98 | 0.0542 | 2.01 | 0.1154 | 2.48 | 0.0473 |
y2 | 0.05 | 0.8185 | 0.12 | 0.8842 | 0.41 | 0.7453 | 0.30 | 0.8762 |
y3 | 0.56 | 0.4547 | 2.86 | 0.0610 | 4.83 | 0.0032 | 3.71 | 0.0069 |
y4 | 0.01 | 0.9340 | 0.16 | 0.8559 | 1.21 | 0.3103 | 0.95 | 0.4358 |
The PRINT=(IARR) option provides the VAR(2) representation in Output 42.1.15.
Output 42.1.15: Infinite Order AR Representation
Infinite Order AR Representation | |||||
---|---|---|---|---|---|
Lag | Variable | y1 | y2 | y3 | y4 |
1 | y1 | 1.33208 | 0.09780 | -0.55614 | -0.83836 |
y2 | 0.07125 | 1.05096 | -0.16899 | 0.54955 | |
y3 | 0.17903 | 0.07959 | 0.99113 | 0.42520 | |
y4 | 0.03732 | 0.04724 | 0.04116 | 1.13795 | |
2 | y1 | -0.34603 | -0.09131 | 0.35351 | 0.96895 |
y2 | -0.09936 | -0.03791 | -0.23900 | -0.28661 | |
y3 | -0.18118 | -0.07859 | -0.02234 | -0.40508 | |
y4 | -0.03222 | -0.04961 | 0.03292 | -0.18568 | |
3 | y1 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
y2 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
y3 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
y4 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
Output 42.1.16 shows whether each variable is the weak exogeneity of other variables. The variable is not the weak exogeneity of other variables, , , and ; the variable is not the weak exogeneity of other variables, , , and ; the variable and are the weak exogeneity of other variables.
Output 42.1.16: Weak Exogeneity Test