Bayesian inference on a cointegrated system begins by using the priors of , which are obtained from the VECM(p) form. Bayesian vector error correction models can improve forecast accuracy for cointegrated processes.
To use a Bayesian vector error correction model, you specify both the PRIOR= option in the MODEL statement and the COINTEG statement. The following statements fit a BVECM(2) form to the simulated data:
/*--- Bayesian Vector Error Correction Model ---*/ proc varmax data=simul2; model y1 y2 / p=2 noint prior=( lambda=0.5 theta=0.2 ) print=(estimates); cointeg rank=1 normalize=y1; run;
The VARMAX procedure output in Figure 42.18. shows the model type fitted to the data, the estimates of the adjustment coefficient (), the parameter estimates in terms of lag 1 coefficients (), and lag 1 first-differenced coefficients ().
Figure 42.18: Parameter Estimates for the BVECM(2) Form
Type of Model | BVECM(2) |
---|---|
Estimation Method | Maximum Likelihood Estimation |
Cointegrated Rank | 1 |
Prior Lambda | 0.5 |
Prior Theta | 0.2 |
Alpha | |
---|---|
Variable | 1 |
y1 | -0.34392 |
y2 | 0.16659 |
Parameter Alpha * Beta' Estimates | ||
---|---|---|
Variable | y1 | y2 |
y1 | -0.34392 | 0.67262 |
y2 | 0.16659 | -0.32581 |
AR Coefficients of Differenced Lag | |||
---|---|---|---|
DIF Lag | Variable | y1 | y2 |
1 | y1 | -0.80070 | -0.59320 |
y2 | 0.33417 | -0.53480 |