The VARMAX Procedure

Bayesian Vector Autoregressive Model

The Bayesian vector autoregressive (BVAR) model avoids problems of collinearity and overparameterization that often occur with the use of VAR models. BVAR models avoid these problems by imposing priors on the AR parameters.

The following statements fit a BVAR(1) model to the simulated data:

/*--- Bayesian Vector Autoregressive Process ---*/

proc varmax data=simul1;
   model y1 y2 / p=1 noint
                 prior=(lambda=0.9 theta=0.1);
run;

The hyperparameters, LAMBDA=0.9 and THETA=0.1, in the PRIOR= option control the prior covariance. Part of the VARMAX procedure output is shown in Figure 42.11, whose parameter estimates are slightly different from those in Figure 42.3. By choosing the appropriate priors, you might be able to obtain more accurate forecasts by using a BVAR model instead of an unconstrained VAR model. For more information, see the section Bayesian VAR and VARX Modeling.

Figure 42.11: Parameter Estimates for the BVAR(1) Model

The VARMAX Procedure

Type of Model BVAR(1)
Estimation Method Maximum Likelihood Estimation
Prior Lambda 0.9
Prior Theta 0.1

Model Parameter Estimates
Equation Parameter Estimate Standard
Error
t Value Pr > |t| Variable
y1 AR1_1_1 1.05623 0.04999 21.13 0.0001 y1(t-1)
  AR1_1_2 -0.34707 0.04807 -7.22 0.0001 y2(t-1)
y2 AR1_2_1 0.40068 0.04867 8.23 0.0001 y1(t-1)
  AR1_2_2 0.48728 0.05670 8.59 0.0001 y2(t-1)

Covariances of Innovations
Variable y1 y2
y1 1.36278 0.45343
y2 0.45343 1.48077