The GENMOD Procedure

References

  • Agresti, A. (2002). Categorical Data Analysis. 2nd ed. New York: John Wiley & Sons.

  • Aitkin, M., Anderson, D. A., Francis, B., and Hinde, J. (1989). Statistical Modelling in GLIM. Oxford: Oxford Science Publications.

  • Akaike, H. (1979). “A Bayesian Extension of the Minimum AIC Procedure of Autoregressive Model Fitting.” Biometrika 66:237–242.

  • Akaike, H. (1981). “Likelihood of a Model and Information Criteria.” Journal of Econometrics 16:3–14.

  • Boos, D. (1992). “On Generalized Score Tests.” American Statistician 46:327–333.

  • Cameron, A. C., and Trivedi, P. K. (1998). Regression Analysis of Count Data. Cambridge: Cambridge University Press.

  • Carey, V., Zeger, S. L., and Diggle, P. J. (1993). “Modelling Multivariate Binary Data with Alternating Logistic Regressions.” Biometrika 80:517–526.

  • Collett, D. (2003). Modelling Binary Data. 2nd ed. London: Chapman & Hall.

  • Cook, R. D., and Weisberg, S. (1982). Residuals and Influence in Regression. New York: Chapman & Hall.

  • Cox, D. R., and Snell, E. J. (1989). The Analysis of Binary Data. 2nd ed. London: Chapman & Hall.

  • Davison, A. C., and Snell, E. J. (1991). “Residuals and Diagnostics.” In Statistical Theory and Modelling, edited by D. V. Hinkley, N. Reid, and E. J. Snell, 83–106. London: Chapman & Hall.

  • Diggle, P. J., Liang, K.-Y., and Zeger, S. L. (1994). Analysis of Longitudinal Data. Oxford: Clarendon Press.

  • Dobson, A. (1990). An Introduction to Generalized Linear Models. London: Chapman & Hall.

  • Dunn, P. K., and Smyth, G. K. (2005). “Series Evaluation of Tweedie Exponential Dispersion Model Densities.” Statistics and Computing 15:267–280.

  • Dunn, P. K., and Smyth, G. K. (2008). “Series Evaluation of Tweedie Exponential Dispersion Model Densities by Fourier Inversion.” Statistics and Computing 18:73–86.

  • Firth, D. (1991). “Generalized Linear Models.” In Statistical Theory and Modelling, edited by D. V. Hinkley, N. Reid, and E. J. Snell, 55–82. London: Chapman & Hall.

  • Fischl, M. A., Richman, D. D., and Hansen, N. (1990). “The Safety and Efficacy of Zidovudine (AZT) in the Treatment of Subjects with Mildly Symptomatic Human Immunodeficiency Virus Type I (HIV) Infection.” Annals of Internal Medicine 112:727–737.

  • Gamerman, D. (1997). “Sampling from the Posterior Distribution in Generalized Linear Models.” Statistics and Computing 7:57–68.

  • Gilks, W. R. (2003). “Adaptive Metropolis Rejection Sampling (ARMS).” Software from MRC Biostatistics Unit, Cambridge, UK. http://www.maths.leeds.ac.uk/~wally.gilks/adaptive.rejection/web_page/Welcome.html.

  • Gilks, W. R., Best, N. G., and Tan, K. K. C. (1995). “Adaptive Rejection Metropolis Sampling within Gibbs Sampling.” Journal of the Royal Statistical Society, Series C 44:455–472.

  • Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice. London: Chapman & Hall.

  • Gilks, W. R., and Wild, P. (1992). “Adaptive Rejection Sampling for Gibbs Sampling.” Journal of the Royal Statistical Society, Series C 41:337–348.

  • Hardin, J. W., and Hilbe, J. M. (2003). Generalized Estimating Equations. Boca Raton, FL: Chapman & Hall/CRC.

  • Hilbe, J. M. (1994). “Log Negative Binomial Regression Using the GENMOD Procedure in SAS/STAT Software.” In Proceedings of the Nineteenth Annual SAS Users Group International Conference, 1199–1204. Cary, NC: SAS Institute Inc. http://www.sascommunity.org/sugi/SUGI94/Sugi-94-205%20Hilbe.pdf.

  • Hilbe, J. M. (2007). Negative Binomial Regression. New York: Cambridge University Press.

  • Hilbe, J. M. (2009). Logistic Regression Models. London: Chapman & Hall/CRC.

  • Hirji, K. F., Mehta, C. R., and Patel, N. R. (1987). “Computing Distributions for Exact Logistic Regression.” Journal of the American Statistical Association 82:1110–1117.

  • Hougaard, P. (1986). “Survival Models for Heterogeneous Populations Derived from Stable Distributions.” Biometrika 73:387–396.

  • Ibrahim, J. G., Chen, M.-H., and Lipsitz, S. R. (1999). “Monte Carlo EM for Missing Covariates in Parametric Regression Models.” Biometrics 55:591–596.

  • Ibrahim, J. G., Chen, M.-H., and Sinha, D. (2001). Bayesian Survival Analysis. New York: Springer-Verlag.

  • Ibrahim, J. G., and Laud, P. W. (1991). “On Bayesian Analysis of Generalized Linear Models Using Jeffreys’ Prior.” Journal of the American Statistical Association 86:981–986.

  • Lambert, D. (1992). “Zero-Inflated Poisson Regression with an Application to Defects in Manufacturing.” Technometrics 34:1–14.

  • Lawless, J. F. (1987). “Negative Binomial and Mixed Poisson Regression.” Canadian Journal of Statistics 15:209–225.

  • Lawless, J. F. (2003). Statistical Model and Methods for Lifetime Data. 2nd ed. New York: John Wiley & Sons.

  • Liang, K.-Y., and Zeger, S. L. (1986). “Longitudinal Data Analysis Using Generalized Linear Models.” Biometrika 73:13–22.

  • Lin, D. Y., Wei, L. J., and Ying, Z. (2002). “Model-Checking Techniques Based on Cumulative Residuals.” Biometrics 58:1–12.

  • Lipsitz, S. R., Fitzmaurice, G. M., Orav, E. J., and Laird, N. M. (1994). “Performance of Generalized Estimating Equations in Practical Situations.” Biometrics 50:270–278.

  • Lipsitz, S. R., Kim, K., and Zhao, L. (1994). “Analysis of Repeated Categorical Data Using Generalized Estimating Equations.” Statistics in Medicine 13:1149–1163.

  • Littell, R. C., Freund, R. J., and Spector, P. C. (1991). SAS System for Linear Models. 3rd ed. Cary, NC: SAS Institute Inc.

  • Long, J. S. (1997). Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, CA: Sage Publications.

  • McCullagh, P. (1983). “Quasi-likelihood Functions.” Annals of Statistics 11:59–67.

  • McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. London: Chapman & Hall.

  • Meeker, W. Q., and Escobar, L. A. (1998). Statistical Methods for Reliability Data. New York: John Wiley & Sons.

  • Mehta, C. R., Patel, N. R., and Senchaudhuri, P. (1992). “Exact Stratified Linear Rank Tests for Ordered Categorical and Binary Data.” Journal of Computational and Graphical Statistics 1:21–40.

  • Miller, M. E., Davis, C. S., and Landis, J. R. (1993). “The Analysis of Longitudinal Polytomous Data: Generalized Estimating Equations and Connections with Weighted Least Squares.” Biometrics 49:1033–1044.

  • Muller, K. E., and Fetterman, B. A. (2002). Regression and ANOVA: An Integrated Approach Using SAS Software. Cary, NC: SAS Institute Inc.

  • Myers, R. H., Montgomery, D. C., and Vining, G. G. (2002). Generalized Linear Models with Applications in Engineering and the Sciences. New York: John Wiley & Sons.

  • Nelder, J. A., and Wedderburn, R. W. M. (1972). “Generalized Linear Models.” Journal of the Royal Statistical Society, Series A 135:370–384.

  • Nelson, W. (1982). Applied Life Data Analysis. New York: John Wiley & Sons.

  • Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996). Applied Linear Statistical Models. 4th ed. Chicago: Irwin.

  • Pan, W. (2001). “Akaike’s Information Criterion in Generalized Estimating Equations.” Biometrics 57:120–125.

  • Pregibon, D. (1981). “Logistic Regression Diagnostics.” Annals of Statistics 9:705–724.

  • Preisser, J. S., and Qaqish, B. F. (1996). “Deletion Diagnostics for Generalised Estimating Equations.” Biometrika 83:551–562.

  • Rao, C. R. (1973). Linear Statistical Inference and Its Applications. 2nd ed. New York: John Wiley & Sons.

  • Rotnitzky, A., and Jewell, N. P. (1990). “Hypothesis Testing of Regression Parameters in Semiparametric Generalized Linear Models for Cluster Correlated Data.” Biometrika 77:485–497.

  • Royall, R. M. (1986). “Model Robust Inference Using Maximum Likelihood Estimators.” International Statistical Review 54:221–226.

  • Searle, S. R. (1971). Linear Models. New York: John Wiley & Sons.

  • Simonoff, J. S. (2003). Analyzing Categorical Data. New York: Springer-Verlag.

  • Smyth, G. K. (1996). “Regression Analysis of Quantity Data with Exact Zeros.” In Proceedings of the Second Australia-Japan Workshop on Stochastic Models in Engineering, Technology, and Management, edited by R. J. Wilson, S. Osaki, and D. N. P. Murthy, 572–580. Queensland, Australia: Technology Management Centre, University of Queensland.

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van der Linde, A. (2002). “Bayesian Measures of Model Complexity and Fit.” Journal of the Royal Statistical Society, Series B 64:583–616. With discussion.

  • Stokes, M. E., Davis, C. S., and Koch, G. G. (2000). Categorical Data Analysis Using the SAS System. 2nd ed. Cary, NC: SAS Institute Inc.

  • Thall, P. F., and Vail, S. C. (1990). “Some Covariance Models for Longitudinal Count Data with Overdispersion.” Biometrics 46:657–671.

  • Tweedie, M. C. K. (1984). “An Index Which Distinguishes between Some Important Exponential Families.” In Statistics: Applications and New Directions—Proceedings of the Indian Statistical Institute Golden Jubilee International Conference, edited by J. K. Ghosh, and J. Roy, 579–604. Calcutta: Indian Statistical Institute.

  • Ware, J. H., Dockery, S. A., III, Speizer, F. E., and Ferris, B. G., Jr. (1984). “Passive Smoking, Gas Cooking, and Respiratory Health of Children Living in Six Cities.” American Review of Respiratory Diseases 129:366–374.

  • White, H. (1982). “Maximum Likelihood Estimation of Misspecified Models.” Econometrica 50:1–25.

  • Williams, D. A. (1987). “Generalized Linear Model Diagnostics Using the Deviance and Single Case Deletions.” Journal of the Royal Statistical Society, Series C 36:181–191.

  • Zeger, S. L., Liang, K.-Y., and Albert, P. S. (1988). “Models for Longitudinal Data: A Generalized Estimating Equation Approach.” Biometrics 44:1049–1060.