The LOGISTIC Procedure

References

  • Agresti, A. (1990). Categorical Data Analysis. New York: John Wiley & Sons.

  • Agresti, A. (1992). “A Survey of Exact Inference for Contingency Tables.” Statistical Science 7:131–177.

  • Agresti, A. (2002). Categorical Data Analysis. 2nd ed. New York: John Wiley & Sons.

  • Agresti, A. (2010). Analysis of Ordinal Categorical Data. 2nd ed. New York: John Wiley & Sons.

  • Agresti, A. (2013). Categorical Data Analysis. 3rd ed. Hoboken, NJ: John Wiley & Sons.

  • Aitchison, J., and Silvey, S. (1957). “The Generalization of Probit Analysis to the Case of Multiple Responses.” Biometrika 44:131–140.

  • Albert, A., and Anderson, J. A. (1984). “On the Existence of Maximum Likelihood Estimates in Logistic Regression Models.” Biometrika 71:1–10.

  • Allison, P. D. (1982). “Discrete-Time Methods for the Analysis of Event Histories.” In Sociological Methods and Research, edited by S. Leinhardt, 61–98. San Francisco: Jossey-Bass.

  • Allison, P. D. (1999). Logistic Regression Using the SAS System: Theory and Application. Cary, NC: SAS Institute Inc.

  • Allison, P. D. (2012). Logistic Regression Using SAS: Theory and Application. 2nd ed. Cary, NC: SAS Institute Inc.

  • Ashford, J. R. (1959). “An Approach to the Analysis of Data for Semi-quantal Responses in Biology Response.” Biometrics 15:573–581.

  • Bartolucci, A. A., and Fraser, M. D. (1977). “Comparative Step-Up and Composite Test for Selecting Prognostic Indicator Associated with Survival.” Biometrical Journal 19:437–448.

  • Breslow, N. E., and Day, N. E. (1980). The Analysis of Case-Control Studies. Statistical Methods in Cancer Research, IARC Scientific Publications, vol. 1, no. 32. Lyon: International Agency for Research on Cancer.

  • Brier, G. W. (1950). “Verification of Forecasts Expressed in Terms of Probability.” Monthly Weather Review 78:1–3.

  • Burnham, K. P., and Anderson, D. R. (1998). Model Selection and Inference: A Practical Information-Theoretic Approach. New York: Springer-Verlag.

  • Cameron, A. C., and Trivedi, P. K. (1998). Regression Analysis of Count Data. Cambridge: Cambridge University Press.

  • Collett, D. (2003). Modelling Binary Data. 2nd ed. London: Chapman & Hall.

  • Cook, R. D., and Weisberg, S. (1982). Residuals and Influence in Regression. New York: Chapman & Hall.

  • Cox, D. R. (1970). The Analysis of Binary Data. New York: Chapman & Hall.

  • Cox, D. R. (1972). “Regression Models and Life Tables.” Journal of the Royal Statistical Society, Series B 20:187–220. With discussion.

  • Cox, D. R., and Snell, E. J. (1989). The Analysis of Binary Data. 2nd ed. London: Chapman & Hall.

  • DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L. (1988). “Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach.” Biometrics 44:837–845.

  • Demler, O. V., Pencina, M. J., and D’Agostino, R. B. (2012). “Misuse of DeLong Test to Compare AUCs for Nested Models.” Statistics in Medicine 31:2577–2587.

  • Derr, B. (2013). “Ordinal Response Modeling with the LOGISTIC Procedure.” In Proceedings of the SAS Global Forum 2013 Conference. Cary, NC: SAS Institute Inc. https://support.sas.com/resources/papers/proceedings13/446-2013.pdf.

  • Draper, C. C., Voller, A., and Carpenter, R. G. (1972). “The Epidemiologic Interpretation of Serologic Data in Malaria.” American Journal of Tropical Medicine and Hygiene 21:696–703.

  • Finney, D. J. (1947). “The Estimation from Individual Records of the Relationship between Dose and Quantal Response.” Biometrika 34:320–334.

  • Firth, D. (1993). “Bias Reduction of Maximum Likelihood Estimates.” Biometrika 80:27–38.

  • Fleiss, J. L. (1981). Statistical Methods for Rates and Proportions. 2nd ed. New York: John Wiley & Sons.

  • Forster, J. J., McDonald, J. W., and Smith, P. W. F. (2003). “Markov Chain Monte Carlo Exact Inference for Binomial and Multinomial Logistic Regression Models.” Statistics and Computing 13:169–177.

  • Freeman, D. H., Jr. (1987). Applied Categorical Data Analysis. New York: Marcel Dekker.

  • Furnival, G. M., and Wilson, R. W. (1974). “Regression by Leaps and Bounds.” Technometrics 16:499–511.

  • Gail, M. H., Lubin, J. H., and Rubinstein, L. V. (1981). “Likelihood Calculations for Matched Case-Control Studies and Survival Studies with Tied Death Times.” Biometrika 68:703–707.

  • Hand, D. J., Daly, F., Lunn, A. D., McConway, K. J., and Ostrowski, E. (1994). A Handbook of Small Data Sets. London: Chapman & Hall.

  • Hanley, J. A., and McNeil, B. J. (1982). “The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve.” Radiology 143:29–36.

  • Harrell, F. E. (1986). “The LOGIST Procedure.” In SUGI Supplemental Library Guide, Version 5 Edition. Cary, NC: SAS Institute Inc.

  • Heinze, G. (1999). The Application of Firth’s Procedure to Cox and Logistic Regression. Technical Report 10, updated January 2001, Department of Medical Computer Sciences, Section of Clinical Biometrics, University of Vienna.

  • Heinze, G. (2006). “A Comparative Investigation of Methods for Logistic Regression with Separated or Nearly Separated Data.” Statistics in Medicine 25:4216–4226.

  • Heinze, G., and Schemper, M. (2002). “A Solution to the Problem of Separation in Logistic Regression.” Statistics in Medicine 21:2409–2419.

  • Hilbe, J. M. (2009). Logistic Regression Models. London: Chapman & Hall/CRC.

  • Hirji, K. F. (1992). “Computing Exact Distributions for Polytomous Response Data.” Journal of the American Statistical Association 87:487–492.

  • Hirji, K. F. (2006). Exact Analysis of Discrete Data. Boca Raton, FL: Chapman & Hall/CRC.

  • Hirji, K. F., Mehta, C. R., and Patel, N. R. (1987). “Computing Distributions for Exact Logistic Regression.” Journal of the American Statistical Association 82:1110–1117.

  • Hirji, K. F., Mehta, C. R., and Patel, N. R. (1988). “Exact Inference for Matched Case-Control Studies.” Biometrics 44:803–814.

  • Hirji, K. F., Tsiatis, A. A., and Mehta, C. R. (1989). “Median Unbiased Estimation for Binary Data.” American Statistician 43:7–11.

  • Hosmer, D. W., Jr., and Lemeshow, S. (2000). Applied Logistic Regression. 2nd ed. New York: John Wiley & Sons.

  • Hosmer, D. W., Jr., and Lemeshow, S. (2013). Applied Logistic Regression. 3rd ed. New York: John Wiley & Sons.

  • Howard, S. (1972). “Remark on the Paper by Cox ('Regression Methods and Life Tables').” Journal of the Royal Statistical Society, Series B 34:187–220.

  • Hurvich, C. M., and Tsai, C.-L. (1993). “A Corrected Akaike Information Criterion for Vector Autoregressive Model Selection.” Journal of Time Series Analysis 14:271–279.

  • Izrael, D., Battaglia, A. A., Hoaglin, D. C., and Battaglia, M. P. (2002). “Use of the ROC Curve and the Bootstrap in Comparing Weighted Logistic Regression Models.” In Proceedings of the Twenty-Seventh Annual SAS Users Group International Conference. Cary, NC: SAS Institute Inc. http://www2.sas.com/proceedings/sugi27/p248-27.pdf.

  • Lachin, J. M. (2000). Biostatistical Methods: The Assessment of Relative Risks. New York: John Wiley & Sons.

  • LaMotte, L. R. (2002). Personal communication, June.

  • Lancaster, H. O. (1961). “Significance Tests in Discrete Distributions.” Journal of the American Statistical Association 56:223–234.

  • Lawless, J. F., and Singhal, K. (1978). “Efficient Screening of Nonnormal Regression Models.” Biometrics 34:318–327.

  • Lee, E. T. (1974). “A Computer Program for Linear Logistic Regression Analysis.” Computer Programs in Biomedicine 4:80–92.

  • Littell, R. C., Freund, R. J., and Spector, P. C. (1991). SAS System for Linear Models. 3rd ed. Cary, NC: SAS Institute Inc.

  • McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. London: Chapman & Hall.

  • McFadden, D. (1974). “Conditional Logit Analysis of Qualitative Choice Behavior.” In Frontiers in Econometrics, edited by P. Zarembka, 105–142. New York: Academic Press.

  • Mehta, C. R., and Patel, N. R. (1995). “Exact Logistic Regression: Theory and Examples.” Statistics in Medicine 14:2143–2160.

  • Mehta, C. R., Patel, N. R., and Senchaudhuri, P. (1992). “Exact Stratified Linear Rank Tests for Ordered Categorical and Binary Data.” Journal of Computational and Graphical Statistics 1:21–40.

  • Mehta, C. R., Patel, N. R., and Senchaudhuri, P. (2000). “Efficient Monte Carlo Methods for Conditional Logistic Regression.” Journal of the American Statistical Association 95:99–108.

  • Moolgavkar, S. H., Lustbader, E. D., and Venzon, D. J. (1985). “Assessing the Adequacy of the Logistic Regression Model for Matched Case-Control Studies.” Statistics in Medicine 4:425–435.

  • Muller, K. E., and Fetterman, B. A. (2002). Regression and ANOVA: An Integrated Approach Using SAS Software. Cary, NC: SAS Institute Inc.

  • Murphy, A. H. (1973). “A New Vector Partition of the Probability Score.” Journal of Applied Meteorology 12:595–600.

  • Naessens, J. M., Offord, K. P., Scott, W. F., and Daood, S. L. (1986). “The MCSTRAT Procedure.” In SUGI Supplemental Library User’s Guide, Version 5 Edition, 307–328. Cary, NC: SAS Institute Inc.

  • Nagelkerke, N. J. D. (1991). “A Note on a General Definition of the Coefficient of Determination.” Biometrika 78:691–692.

  • Nelder, J. A., and Wedderburn, R. W. M. (1972). “Generalized Linear Models.” Journal of the Royal Statistical Society, Series A 135:370–384.

  • Peterson, B. L., and Harrell, F. E. (1990). “Partial Proportional Odds Models for Ordinal Response Variables.” Journal of the Royal Statistical Society, Series B 39:205–217.

  • Pregibon, D. (1981). “Logistic Regression Diagnostics.” Annals of Statistics 9:705–724.

  • Pregibon, D. (1984). “Data Analytic Methods for Matched Case-Control Studies.” Biometrics 40:639–651.

  • Prentice, R. L., and Gloeckler, L. A. (1978). “Regression Analysis of Grouped Survival Data with Applications to Breast Cancer Data.” Biometrics 34:57–67.

  • Press, S. J., and Wilson, S. (1978). “Choosing between Logistic Regression and Discriminant Analysis.” Journal of the American Statistical Association 73:699–705.

  • Santner, T. J., and Duffy, D. E. (1986). “A Note on A. Albert and J. A. Anderson’s Conditions for the Existence of Maximum Likelihood Estimates in Logistic Regression Models.” Biometrika 73:755–758.

  • SAS Institute Inc. (1995). Logistic Regression Examples Using the SAS System. Cary, NC: SAS Institute Inc.

  • SAS Institute Inc. (2015). “Sample 54866: Logistic Model Selection Using Area under Curve (AUC) or R-Square Selection Criteria.” SAS Institute Inc., Cary, NC. http://support.sas.com/kb/54/866.html.

  • Stokes, M. E., Davis, C. S., and Koch, G. G. (2000). Categorical Data Analysis Using the SAS System. 2nd ed. Cary, NC: SAS Institute Inc.

  • Stokes, M. E., Davis, C. S., and Koch, G. G. (2012). Categorical Data Analysis Using SAS. 3rd ed. Cary, NC: SAS Institute Inc.

  • Storer, B. E., and Crowley, J. (1985). “A Diagnostic for Cox Regression and General Conditional Likelihoods.” Journal of the American Statistical Association 80:139–147.

  • Venzon, D. J., and Moolgavkar, S. H. (1988). “A Method for Computing Profile-Likelihood-Based Confidence Intervals.” Journal of the Royal Statistical Society, Series C 37:87–94.

  • Vollset, S. E., Hirji, K. F., and Afifi, A. A. (1991). “Evaluation of Exact and Asymptotic Interval Estimators in Logistic Analysis of Matched Case-Control Studies.” Biometrics 47:1311–1325.

  • Walker, S. H., and Duncan, D. B. (1967). “Estimation of the Probability of an Event as a Function of Several Independent Variables.” Biometrika 54:167–179.

  • Williams, D. A. (1982). “Extra-binomial Variation in Logistic Linear Models.” Journal of the Royal Statistical Society, Series C 31:144–148.

  • Zamar, D., McNeney, B., , and Graham, J. (2007). “elrm: Software Implementing Exact-Like Inference for Logistic Regression Models.” Journal of Statistical Software 21:1–18.