Table 29.1 summarizes the statements and options used with the QLIM procedure.
Table 29.1: PROC QLIM Functional Summary
Description |
Statement |
Option |
---|---|---|
Data Set Options |
||
Specifies the input data set |
QLIM |
|
Writes parameter estimates to an output data set |
QLIM |
|
Writes predictions to an output data set |
OUTPUT |
|
Declaring the Role of Variables |
||
Specifies BY-group processing |
||
Specifies classification variables |
||
Specifies a frequency variable |
||
Specifies a weight variable |
WEIGHT |
|
Printing Control Options |
||
Requests all printing options |
QLIM |
|
Prints correlation matrix of the estimates |
QLIM |
|
Prints covariance matrix of the estimates |
QLIM |
|
Prints a summary iteration listing |
QLIM |
|
Suppresses the normal printed output |
QLIM |
|
Plotting Options |
||
Displays plots |
QLIM |
|
Options to Control the Optimization Process |
||
Specifies the optimization method |
QLIM |
|
Specifies the optimization options |
NLOPTIONS |
|
Sets initial values for parameters |
||
Specifies upper and lower bounds for the parameter estimates |
||
Specifies linear restrictions on the parameter estimates |
||
Model Estimation Options |
||
Specifies options specific to Box-Cox transformation |
MODEL |
|
Suppresses the intercept parameter |
MODEL |
|
Specifies variable selection |
MODEL |
|
Specifies the type of random number generators |
MODEL |
RANDNUM= |
Specifies that initial values are generated using random numbers |
MODEL |
RANDOMINIT |
Specifies a seed for pseudo-random number generation |
QLIM |
|
Specifies the number of draws for Monte Carlo integration |
QLIM |
|
Specifies the method to calculate parameter covariance |
QLIM |
|
Requests estimation by Heckman’s two-step method |
QLIM |
|
Integration Method Options for Random-Effects Models |
||
Requests the simulation method |
RANDOM |
|
Requests the Gauss-Hermite quadrature method |
RANDOM |
|
Requests the Halton sequence method |
RANDOM |
|
Bayesian MCMC Options |
||
Controls the aggregation of multiple posterior chains |
BAYES |
|
Automates the initialization of the MCMC algorithm |
BAYES |
|
Specifies the initial values of the MCMC |
||
Evaluates the marginal likelihood |
BAYES |
|
Specifies the maximum number of tuning phases |
BAYES |
|
Specifies the minimum number of tuning phases |
BAYES |
|
Specifies the number of burn-in iterations |
BAYES |
|
Specifies the number of iterations during the sampling phase |
BAYES |
|
Specifies the number of samples for the prior predictive analysis |
BAYES |
|
Specifies the number of threads to use during the sampling phase |
BAYES |
|
Specifies the number of iterations during the tuning phase |
BAYES |
|
Controls options for constructing the initial proposal covariance matrix |
BAYES |
|
Specifies the sampling scheme |
BAYES |
|
Specifies the random number generator seed |
BAYES |
|
Prints the time required for the MCMC sampling |
BAYES |
|
Controls the thinning of the Markov chain |
BAYES |
|
Bayesian Summary Statistics and Convergence Diagnostics |
||
Displays convergence diagnostics |
BAYES |
|
Displays summary statistics of the posterior samples |
BAYES |
|
Bayesian Prior and Posterior Samples |
||
Specifies a SAS data set for the posterior samples |
BAYES |
|
Specifies a SAS data set for the prior samples |
BAYES |
|
Bayesian Analysis |
||
Specifies normal prior distribution |
PRIOR |
NORMAL (MEAN=, VAR=) |
Specifies gamma prior distribution |
PRIOR |
GAMMA (SHAPE=, SCALE=) |
Specifies square root gamma prior distribution |
PRIOR |
SQGAMMA (SHAPE=, SCALE=) |
Specifies inverse gamma prior distribution |
PRIOR |
IGAMMA (SHAPE=, SCALE=) |
Specifies square root inverse gamma prior distribution |
PRIOR |
SQIGAMMA (SHAPE=, SCALE=) |
Specifies uniform prior distribution |
PRIOR |
UNIFORM (MIN=, MAX=) |
Specifies beta prior distribution |
PRIOR |
BETA
(SHAPE1=, SHAPE2=, |
Specifies t prior distribution |
PRIOR |
T (LOCATION=, DF=) |
Endogenous Variable Options |
||
Specifies discrete variable |
ENDOGENOUS |
|
Specifies censored variable |
ENDOGENOUS |
|
Specifies truncated variable |
ENDOGENOUS |
|
Specifies variable selection condition |
ENDOGENOUS |
|
Specifies stochastic frontier variable |
ENDOGENOUS |
|
Endogeneity and Overidentification Test Options |
||
Requests the variable addition test for endogeneity |
ENDOGENOUS |
|
Requests the overidentification test |
ENDOGENOUS |
|
Heteroscedasticity Model Options |
||
Specifies the function for heteroscedasticity models |
HETERO |
|
Squares the function for heteroscedasticity models |
HETERO |
|
Specifies no constant for heteroscedasticity models |
HETERO |
|
Output Control Options |
||
Outputs predicted values |
OUTPUT |
|
Outputs structured part |
OUTPUT |
|
Outputs residuals |
OUTPUT |
|
Outputs error standard deviation |
OUTPUT |
|
Outputs marginal effects |
OUTPUT |
|
Outputs probability for the current response |
OUTPUT |
|
Outputs probability for all responses |
OUTPUT |
|
Outputs expected value |
OUTPUT |
|
Outputs conditional expected value |
OUTPUT |
|
Outputs inverse Mills ratio |
OUTPUT |
|
Outputs technical efficiency measures |
OUTPUT |
|
OUTPUT |
||
Includes covariances in the OUTEST= data set |
QLIM |
|
Includes correlations in the OUTEST= data set |
QLIM |
|
Test Request Options |
||
Requests Wald, Lagrange multiplier, and likelihood ratio tests |
TEST |
|
Requests the WALD test |
TEST |
|
Requests the Lagrange multiplier test |
TEST |
|
Requests the likelihood ratio test |
TEST |