The QLIM Procedure

References

  • Abramowitz, M., and Stegun, I. A., eds. (1970). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th printing. New York: Dover.

  • Aigner, C., Lovell, C. A. K., and Schmidt, P. (1977). “Formulation and Estimation of Stochastic Frontier Production Function Models.” Journal of Econometrics 6:21–37.

  • Aitchison, J., and Silvey, S. (1957). “The Generalization of Probit Analysis to the Case of Multiple Responses.” Biometrika 44:131–140.

  • Amemiya, T. (1978a). “The Estimation of a Simultaneous Equation Generalized Probit Model.” Econometrica 46:1193–1205.

  • Amemiya, T. (1978b). “On a Two-Step Estimate of a Multivariate Logit Model.” Journal of Econometrics 8:13–21.

  • Amemiya, T. (1981). “Qualitative Response Models: A Survey.” Journal of Economic Literature 19:483–536.

  • Amemiya, T. (1984). “Tobit Models: A Survey.” Journal of Econometrics 24:3–61.

  • Amemiya, T. (1985). Advanced Econometrics. Cambridge, MA: Harvard University Press.

  • Battese, G. E., and Coelli, T. J. (1988). “Prediction of Firm-Level Technical Efficiencies with a Generalized Frontier Production Function and Panel Data.” Journal of Econometrics 38:387–399.

  • Ben-Akiva, M., and Lerman, S. R. (1985). Discrete Choice Analysis: Theory and Application to Travel Demand. Cambridge, MA: MIT Press.

  • Bera, A. K., Jarque, C. M., and Lee, L.-F. (1984). “Testing the Normality Assumption in Limited Dependent Variable Models.” International Economic Review 25:563–578.

  • Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. 2nd ed. New York: Springer-Verlag.

  • Bhat, C. R. (2001). “Quasi-random Maximum Simulated Likelihood Estimation of the Mixed Multinomial Logit Model.” Transportation Research, Part B 35:677–693.

  • Bloom, D. E., and Killingsworth, M. R. (1985). “Correcting for Truncation Bias Caused by a Latent Truncation Variable.” Journal of Econometrics 27:131–135.

  • Box, G. E. P., and Cox, D. R. (1964). “An Analysis of Transformations.” Journal of the Royal Statistical Society, Series B 26:211–234.

  • Butler, J. S., and Moffitt, R. (1982). “A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model.” Econometrica 50:761–764.

  • Cameron, A. C., and Trivedi, P. K. (1986). “Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests.” Journal of Applied Econometrics 1:29–53.

  • Cameron, A. C., and Trivedi, P. K. (1998). Regression Analysis of Count Data. Cambridge: Cambridge University Press.

  • Chan, J. C. C., and Eisenstat, E. (2015). “Marginal Likelihood Estimation with the Cross-Entropy Method.” Econometric Reviews 34:256–285.

  • Christensen, L. R., and Greene, W. H. (1976). “Economies of Scale in U.S. Electric Power Generation.” Journal of Political Economy 84:655–676.

  • Coelli, T. J., Prasada Rao, D. S., and Battese, G. E. (1998). An Introduction to Efficiency and Productivity Analysis. London: Kluwer Academic.

  • Copley, P. A., Doucet, M. S., and Gaver, K. M. (1994). “A Simultaneous Equations Analysis of Quality Control Review Outcomes and Engagement Fees for Audits of Recipients of Federal Financial Assistance.” Accounting Review 69:244–256.

  • Cox, D. R. (1970). Analysis of Binary Data. London: Metheun.

  • Cox, D. R. (1972). “Regression Models and Life Tables.” Journal of the Royal Statistical Society, Series B 20:187–220. With discussion.

  • Cox, D. R. (1975). “Partial Likelihood.” Biometrika 62:269–276.

  • Deis, D. R., and Hill, R. C. (1998). “An Application of the Bootstrap Method to the Simultaneous Equations Model of the Demand and Supply of Audit Services.” Contemporary Accounting Research 15:83–99.

  • Estrella, A. (1998). “A New Measure of Fit for Equations with Dichotomous Dependent Variables.” Journal of Business and Economic Statistics 16:198–205.

  • Gallant, A. R. (1987). Nonlinear Statistical Models. New York: John Wiley & Sons.

  • Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis. 2nd ed. London: Chapman & Hall.

  • Genz, A. (1992). “Numerical Computation of Multivariate Normal Probabilities.” Journal of Computational and Graphical Statistics 1:141–150.

  • Geweke, J. (1995). Monte Carlo Simulation and Numerical Integration. Staff Research Report 192, Federal Reserve Bank of Minneapolis.

  • Godfrey, L. G. (1988). Misspecification Tests in Econometrics. Cambridge: Cambridge University Press.

  • Gourieroux, C., Monfort, A., Renault, E., and Trognon, A. (1987). “Generalized Residuals.” Journal of Econometrics 34:5–32.

  • Greene, W. H. (1997). Econometric Analysis. 3rd ed. Upper Saddle River, NJ: Prentice-Hall.

  • Greene, W. H. (2001). “Fixed and Random Effects in Nonlinear Models.” Department of Economics, Leonard N. Stern School of Business, New York University.

  • Gregory, A. W., and Veall, M. R. (1985). “On Formulating Wald Tests for Nonlinear Restrictions.” Econometrica 53:1465–1468.

  • Hajivassiliou, V. A. (1993). “Simulation Estimation Methods for Limited Dependent Variable Models.” In Econometrics, edited by G. S. Maddala, C. R. Rao, and H. D. Vinod. Vol. 11 of Handbook of Statistics, 519–543. New York: Elsevier Science.

  • Hajivassiliou, V. A., and McFadden, D. L. (1998). “The Method of Simulated Scores for the Estimation of LDV Models.” Econometrica 66:863–896.

  • Hajivassiliou, V. A., McFadden, D. L., and Ruud, P. A. (1996). “Simulation of Multivariate Normal Rectangle Probabilities and Their Derivatives: Theoretical and Computational Results.” Journal of Econometrics 72:85–134.

  • Halton, J. H. (1960). “On the Efficiency of Certain Quasi-random Sequences of Points in Evaluating Multi-dimensional Integrals.” Numerische Mathematik 2:84–90.

  • Heckman, J. J. (1978). “Dummy Endogenous Variables in a Simultaneous Equation System.” Econometrica 46:931–959.

  • Hinkley, D. V. (1975). “On Power Transformations to Symmetry.” Biometrika 62:101–111.

  • Jondrow, J., Lovell, C. A. K., Materov, I. S., and Schmidt, P. (1982). “On the Estimation of Technical Efficiency in the Stochastic Frontier Production Function Model.” Journal of Econometrics 19:233–238.

  • Kim, M., and Hill, R. C. (1993). “The Box-Cox Transformation-of-Variables in Regression.” Empirical Economics 18:307–319.

  • Kumbhakar, S. C., and Lovell, C. A. K. (2000). Stochastic Frontier Analysis. New York: Cambridge University Press.

  • Lee, L.-F. (1981). “Simultaneous Equations Models with Discrete and Censored Dependent Variables.” In Structural Analysis of Discrete Data with Econometric Applications, edited by C. F. Manski, and D. McFadden, 346–364. Cambridge, MA: MIT Press.

  • Long, J. S. (1997). Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, CA: Sage Publications.

  • McFadden, D. (1974). “Conditional Logit Analysis of Qualitative Choice Behavior.” In Frontiers in Econometrics, edited by P. Zarembka, 105–142. New York: Academic Press.

  • McFadden, D. (1981). “Econometric Models of Probabilistic Choice.” In Structural Analysis of Discrete Data with Econometric Applications, edited by C. F. Manski, and D. McFadden, 2–50. Cambridge, MA: MIT Press.

  • McKelvey, R. D., and Zavoina, W. (1975). “A Statistical Model for the Analysis of Ordinal Level Dependent Variables.” Journal of Mathematical Sociology 4:103–120.

  • Meeusen, W., and van den Broeck, J. (1977). “Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error.” International Economic Review 18:435–444.

  • Morokoff, W. J., and Caflisch, R. E. (1995). “Quasi-Monte Carlo Integration.” Journal of Computational Physics 122:218–230.

  • Mroz, T. A. (1987). “The Sensitivity of an Empirical Model of Married Women’s Work to Economic and Statistical Assumptions.” Econometrica 55:765–799.

  • Mroz, T. A. (1999). “Discrete Factor Approximations in Simultaneous Equation Models: Estimating the Impact of a Dummy Endogenous Variable on a Continuous Outcome.” Journal of Econometrics 92:233–274.

  • Nawata, K. (1994). “Estimation of Sample Selection Bias Models by the Maximum Likelihood Estimator and Heckman’s Two-Step Estimator.” Economics Letters 45:33–40.

  • Parks, R. W. (1967). “Efficient Estimation of a System of Regression Equations When Disturbances Are Both Serially and Contemporaneously Correlated.” Journal of the American Statistical Association 62:500–509.

  • Phillips, C. B., and Park, J. Y. (1988). “On Formulating Wald Tests of Nonlinear Restrictions.” Econometrica 56:1065–1083.

  • Powers, D. A., and Xie, Y. (2000). Statistical Methods for Categorical Data Analysis. San Diego: Academic Press.

  • Rivers, D., and Vuong, Q. H. (1988). “Limited Information Estimators and Exogeneity Tests for Simultaneous Probit Models.” Journal of Econometrics 39:347–366.

  • Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms.” Annals of Applied Probability 7:110–120.

  • Roberts, G. O., and Rosenthal, J. S. (2001). “Optimal Scaling for Various Metropolis-Hastings Algorithms.” Statistical Science 16:351–367.

  • Schervish, M. J. (1995). Theory of Statistics. New York: Springer-Verlag.

  • Sloan, I. H., and Woźniakowski, H. (1998). “When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals?” Journal of Complexity 14:1–33.

  • Spanier, J., and Maize, E. (1991). “Quasi-random Methods for Estimating Integrals Using Relatively Small Samples.” SIAM Review 36:18–44.

  • Stacy, E. W. (1962). “A Generalization of the Gamma Distribution.” Annals of Mathematical Statistics 33:1187–1192.

  • Train, K. E. (2009). Discrete Choice Methods with Simulation. 2nd ed. Cambridge: Cambridge University Press.

  • Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: MIT Press.

  • Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.