The QLIM Procedure

Standard Distributions

Table 29.3 through Table 29.10 show all the distribution density functions that PROC QLIM recognizes. You specify these distribution densities in the PRIOR statement.

Table 29.3: Beta Distribution

PRIOR statement

BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)

 

Note: Commonly $m=0$ and $M=1$.

Density

$\frac{(\theta -m)^{a-1} (M-\theta )^{b-1}}{B(a,b)(M-m)^{a+b-1}}$

Parameter restriction

$a>0$, $b>0$, $-\infty <m<M<\infty $

Range

$ \left\{  \begin{array}{ll} \left[ m, M \right] &  \mbox{when } a = 1, b = 1 \\ \left[ m, M \right) &  \mbox{when } a = 1, b \neq 1 \\ \left( m, M \right] &  \mbox{when } a \neq 1, b = 1 \\ \left( m, M \right) &  \mbox{otherwise} \end{array} \right. $

Mean

$ \frac{a}{a+b}\times (M-m)+m$

Variance

$ \frac{ab}{(a+b)^2(a+b+1)}\times (M-m)^2$

Mode

$ \left\{  \begin{array}{ll} \frac{a-1}{a+b-2}\times M+\frac{b-1}{a+b-2}\times m &  a > 1, b > 1 \\ m \mbox{ and } M &  a < 1, b < 1 \\ m &  \left\{  \begin{array}{l} a < 1, b \geq 1 \\ a = 1, b > 1 \\ \end{array} \right. \\ M &  \left\{  \begin{array}{l} a \geq 1, b < 1 \\ a > 1, b = 1 \\ \end{array} \right. \\ \mbox{not unique} &  a = b = 1 \end{array} \right. $

Defaults

SHAPE1=SHAPE2=1, $\Variable{MIN}\rightarrow -\infty $, $\Variable{MAX}\rightarrow \infty $


Table 29.4: Gamma Distribution

PRIOR statement

GAMMA(SHAPE=a, SCALE=b )

Density

$\frac{1}{b^ a\Gamma (a)} \theta ^{a-1} e^{-\theta /b} $

Parameter restriction

$ a > 0, b > 0 $

Range

$[0,\infty )$

Mean

$ab$

Variance

$ab^2$

Mode

$(a-1)b$

Defaults

SHAPE=SCALE=1


Table 29.5: Square Root Gamma Distribution

PRIOR statement

SQGAMMA(SHAPE=a, SCALE=b )

Density

$\frac{2}{b^ a\Gamma (a)} \theta ^{2a-1} e^{-\theta ^{2}/b} $

Parameter restriction

$ a > 0, b > 0 $

Range

$[0,\infty )$

Mean

$\frac{\Gamma (a+\frac{1}{2})}{\Gamma (a)}\sqrt {b}$

Variance

$\left\{ a-\left[\frac{\Gamma (a+\frac{1}{2})}{\Gamma (a)}\right]^{2}\right\} b$

Mode

$\sqrt {(a-\frac{1}{2})b}, \qquad a\geq \frac{1}{2}$

Defaults

SHAPE=SCALE=1

See Stacy (1962) for more details.


Table 29.6: Inverse-Gamma Distribution

PRIOR statement

IGAMMA(SHAPE=a, SCALE=b)

Density

$ \frac{b^ a}{\Gamma (a)} \theta ^{-(a+1)}e^{-b/\theta } $

Parameter restriction

$ a > 0, b > 0$

Range

$ 0<\theta <\infty $

Mean

$\frac{b}{a-1},\qquad a > 1$

Variance

$\frac{b^2}{(a-1)^2(a-2)},\qquad a>2$

Mode

$ \frac{b}{a+1}$

Defaults

SHAPE=2.000001, SCALE=1


Table 29.7: Square Root Inverse-Gamma Distribution

PRIOR statement

SQIGAMMA(SHAPE=a, SCALE=b)

Density

$ \frac{2b^ a}{\Gamma (a)} \theta ^{-(2a+1)}e^{-b/\theta ^{2}} $

Parameter restriction

$ a > 0, b > 0$

Range

$ 0<\theta <\infty $

Mean

$\frac{\Gamma (a-\frac{1}{2})}{\Gamma (a)}\sqrt {b},\qquad a > \frac{1}{2}$

Variance

$\left\{ \frac{1}{a-1}-\left[\frac{\Gamma (a-\frac{1}{2})}{\Gamma (a)}\right]^{2}\right\} b,\qquad a>1$

Mode

$ \sqrt {\frac{b}{a+\frac{1}{2}}}$

Defaults

SHAPE=2.000001, SCALE=1

See Stacy (1962) for more details.


Table 29.8: Normal Distribution

PRIOR statement

NORMAL(MEAN=$\mu $, VAR=$\sigma ^2$)

Density

$ \frac{1}{\sigma \sqrt {2\pi }} \exp \left( - \frac{(\theta - \mu )^2}{2\sigma ^2}\right) $

Parameter restriction

$ \sigma ^2 > 0 $

Range

$ -\infty <\theta <\infty $

Mean

$\mu $

Variance

$\sigma ^2$

Mode

$\mu $

Defaults

MEAN=0, VAR=1000000


Table 29.9: t Distribution

PRIOR statement

T(LOCATION=$\mu $, DF=$\nu $)

Density

$\frac{\Gamma \left(\frac{\nu +1}{2}\right)}{\Gamma \left(\frac{\nu }{2}\right)\sqrt {\pi \nu }}\left[1+\frac{(\theta -\mu )^2}{\nu }\right]^{-\frac{\nu +1}{2}} $

Parameter restriction

$ \nu > 0 $

Range

$ -\infty <\theta <\infty $

Mean

$\mu , \text { for }\nu >1$

Variance

$\frac{\nu }{\nu -2}, \text { for }\nu >2$

Mode

$\mu $

Defaults

LOCATION=0, DF=3


Table 29.10: Uniform Distribution

PRIOR statement

UNIFORM(MIN=m, MAX=M)

Density

$ \frac{1}{M-m}$

Parameter restriction

$-\infty <m<M<\infty $

Range

$ \theta \in [m, M]$

Mean

$ \frac{m+M}{2} $

Variance

$\frac{(M-m)^2}{12}$

Mode

Not unique

Defaults

MIN$\rightarrow -\infty $, MAX$\rightarrow \infty $