
Bayesian inference on a cointegrated system begins by using the priors of
, which are obtained from the VECM(p) form. Bayesian vector error correction models can improve forecast accuracy for cointegrated processes.
To use a Bayesian vector error correction model, you specify both the PRIOR= option in the MODEL statement and the COINTEG statement. The following statements fit a BVECM(2) form to the simulated data:
/*--- Bayesian Vector Error Correction Model ---*/
proc varmax data=simul2;
model y1 y2 / p=2 noint
prior=( lambda=0.5 theta=0.2 )
print=(estimates);
cointeg rank=1 normalize=y1;
run;
The VARMAX procedure output in Figure 42.18. shows the model type fitted to the data, the estimates of the adjustment coefficient (
), the parameter estimates in terms of lag 1 coefficients (
), and lag 1 first-differenced coefficients (
).
Figure 42.18: Parameter Estimates for the BVECM(2) Form
| Type of Model | BVECM(2) |
|---|---|
| Estimation Method | Maximum Likelihood Estimation |
| Cointegrated Rank | 1 |
| Prior Lambda | 0.5 |
| Prior Theta | 0.2 |
| Alpha | |
|---|---|
| Variable | 1 |
| y1 | -0.34392 |
| y2 | 0.16659 |
| Parameter Alpha * Beta' Estimates | ||
|---|---|---|
| Variable | y1 | y2 |
| y1 | -0.34392 | 0.67262 |
| y2 | 0.16659 | -0.32581 |
| AR Coefficients of Differenced Lag | |||
|---|---|---|---|
| DIF Lag | Variable | y1 | y2 |
| 1 | y1 | -0.80070 | -0.59320 |
| y2 | 0.33417 | -0.53480 | |