Baddeley, A. (2007). “Spatial Point Processes and Their Applications.” In Stochastic Geometry, edited by W. Weil, 1–75. Vol. 1892 of Lecture Notes in Mathematics. Berlin: Springer.
Baddeley, A. (2010). “Modeling Strategies.” In Handbook of Spatial Statistics, edited by A. E. Gelfand, P. J. Diggle, M. Fuentes, and P. Guttorp, 339–369. Boca Raton, FL: Chapman & Hall/CRC.
Baddeley, A. (2014). Personal communication.
Baddeley, A., and Turner, R. (2000). “Practical Maximum Pseudolikelihood for Spatial Point Patterns.” Australian and New Zealand Journal of Statistics 42:283–322.
Baddeley, A., and Turner, R. (2005). “Spatstat: An R Package for Analyzing Spatial Point Patterns.” Journal of Statistical Software 12:1–42.
Baddeley, A., and Turner, R. (2013). “Spatstat: An R Package for Spatial Statistics (ver. 1.31-3).” http://www.spatstat.org/spatstat/.
Baddeley, A., Turner, R., Moller, J., and Hazelton, M. (2005). “Residual Analysis for Spatial Point Processes.” Journal of the Royal Statistical Society, Series B 67:616–666.
Baddeley, A. J., Kerscher, M., Schladitz, K., and Scott, B. T. (2000). “Estimating the J Function without Edge Correction.” Statistica Neerlandica 54:315–328.
Banerjee, S. (2005). “On Geodetic Distance Computations in Spatial Modeling.” Biometrics 61:617–625.
Berman, M., and Turner, R. (1992). “Approximating Point Process Likelihoods with GLIM.” Journal of the Royal Statistical Society, Series C 41:31–38.
Condit, R. (1998). Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama, and a Comparison with Other Plots. Berlin: Springer-Verlag.
Condit, R., Hubbell, S. P., and Foster, R. B. (1996). “Changes in Tree Species Abundance in a Neotropical Forest: Impact of Climate Change.” Journal of Tropical Ecology 12:231–256.
Cressie, N., and Collins, L. B. (2001). “Analysis of Spatial Point Patterns Using Bundles of Product Density LISA Functions.” Journal of Agricultural, Biological, and Environmental Statistics 6:118–135.
D’Agostino, R. B., and Stephens, M., eds. (1986). Goodness-of-Fit Techniques. New York: Marcel Dekker.
Diggle, P. J. (2003). Statistical Analysis of Spatial Point Patterns. New York: Oxford University Press.
Diggle, P. J., Eglen, S. R., and Troy, J. B. (2006). “Modelling the Bivariate Spatial Distribution of Amacrine Cells.” In Case Studies in Spatial Point Process Modeling, edited by A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan, 215–233. New York: Springer.
Diggle, P. J., Rowlingson, B., and Su, T.-L. (2005). “Point Process Methodology for On-Line Spatio-temporal Disease Surveillance.” Environmetrics 16:423–434.
Fiksel, T. (1988). “Edge-Corrected Density Estimators for Point Processes.” Statistics 19:67–75.
Hubbell, S. P., and Foster, R. B. (1983). “Diversity of Canopy Trees in a Neotropical Forest and Implications for the Conservation of Tropical Trees.” In Tropical Rain Forest: Ecology and Management, edited by S. J. Sutton, T. C. Whitmore, and A. C. Chadwick, 25–41. Oxford: Blackwell.
Hughes, A. (1985). “New Perspectives in Retinal Organisation.” Progress in Retinal Research 4:243–314.
Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns. Hoboken, NJ: John Wiley & Sons.
Lewis, P. A. W., and Shedler, G. S. (1979). “Simulation of Nonhomogeneous Poisson Processes by Thinning.” Naval Research Logistics Quarterly 26:403–413.
Ripley, B. D. (1988). Statistical Inference for Spatial Processes. Cambridge: Cambridge University Press.
Ripley, B. D., and Rasson, J.-P. (1977). “Finding the Edge of a Poisson Forest.” Journal of Applied Probability 14:483–491.
Schabenberger, O., and Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis. Boca Raton, FL: Chapman & Hall/CRC.
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. New York: Chapman & Hall.
Stoyan, D. (1987). “Statistical Analysis of Spatial Point Processes: A Soft-Core Model and Cross-correlations of Marks.” Biometrical Journal 29:971–980.
Stoyan, D., and Stoyan, H. (1994). Fractals, Random Shapes, and Point Fields: Methods of Geometrical Statistics. Chichester, UK: John Wiley & Sons.
Wicklin, R. (2013). Simulating Data with SAS. Cary, NC: SAS Institute Inc.