The MIANALYZE Procedure

Example 76.5 Reading Generalized Linear Model Results

This example creates data sets that contains parameter estimates and corresponding covariance matrices computed by a generalized linear model analysis for a set of imputed data sets. These estimates are then combined to generate valid statistical inferences about the model parameters.

The following statements use PROC GENMOD to generate the parameter estimates and covariance matrix for each imputed data set:

ods select none;
proc genmod data=outmi;
   model Oxygen= RunTime RunPulse/covb;
   by _Imputation_;
   ods output ParameterEstimates=gmparms
              ParmInfo=gmpinfo
              CovB=gmcovb;
run;
ods select all;

Because of the ODS SELECT statements, no output is displayed. The following statements print (in Output 76.5.1) the output parameter estimates and covariance matrix from PROC GENMOD for the first two imputed data sets:

proc print data=gmparms (obs=8);
   var _Imputation_ Parameter Estimate StdErr;
   title 'GENMOD Model Coefficients (First Two Imputations)';
run;

Output 76.5.1: PROC GENMOD Model Coefficients

GENMOD Model Coefficients (First Two Imputations)

Obs _Imputation_ Parameter Estimate StdErr
1 1 Intercept 86.5440 9.5107
2 1 RunTime -2.8223 0.3120
3 1 RunPulse -0.0587 0.0556
4 1 Scale 2.6692 0.3390
5 2 Intercept 83.0207 8.4489
6 2 RunTime -3.0002 0.3217
7 2 RunPulse -0.0249 0.0488
8 2 Scale 2.5727 0.3267



The following statements display the parameter information table in Output 76.5.2. The table identifies parameter names used in the covariance matrices. The parameters Prm1, Prm2, and Prm3 are used for the effects Intercept, RunTime, and RunPulse, respectively, in each covariance matrix.

proc print data=gmpinfo (obs=6);
   title 'GENMOD Parameter Information (First Two Imputations)';
run;

Output 76.5.2: PROC GENMOD Model Information

GENMOD Parameter Information (First Two Imputations)

Obs _Imputation_ Parameter Effect
1 1 Prm1 Intercept
2 1 Prm2 RunTime
3 1 Prm3 RunPulse
4 2 Prm1 Intercept
5 2 Prm2 RunTime
6 2 Prm3 RunPulse



The following statements display (in Output 76.5.3) the output covariance matrices from PROC GENMOD for the first two imputed data sets. Note that the GENMOD procedure computes maximum likelihood estimates for each covariance matrix.

proc print data=gmcovb (obs=8);
   var _Imputation_ RowName Prm1 Prm2 Prm3;
   title 'GENMOD Covariance Matrices (First Two Imputations)';
run;

Output 76.5.3: PROC GENMOD Covariance Matrices

GENMOD Covariance Matrices (First Two Imputations)

Obs _Imputation_ RowName Prm1 Prm2 Prm3
1 1 Prm1 90.453923 -0.483394 -0.497473
2 1 Prm2 -0.483394 0.0973159 -0.003113
3 1 Prm3 -0.497473 -0.003113 0.0030954
4 1 Scale 1.344E-15 -1.09E-17 -6.12E-18
5 2 Prm1 71.383332 -0.603037 -0.378616
6 2 Prm2 -0.603037 0.1034766 -0.002826
7 2 Prm3 -0.378616 -0.002826 0.0023843
8 2 Scale 1.602E-14 1.755E-16 -1.02E-16



The following statements use the MIANALYZE procedure with input PARMS=, PARMINFO=, and COVB= data sets:

proc mianalyze parms=gmparms covb=gmcovb parminfo=gmpinfo;
   modeleffects Intercept RunTime RunPulse;
run;

Since the GENMOD procedure computes maximum likelihood estimates for the covariance matrix, the EDF= option is not used. The "Parameter Estimates" table in Output 76.5.4 displays the estimated mean and standard error of the regression coefficients.

Output 76.5.4: Parameter Estimates

The MIANALYZE Procedure

Parameter Estimates (25 Imputations)
Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum Theta0 t for H0:
Parameter=Theta0
Pr > |t|
Intercept 92.700420 9.565616 73.89020 111.5106 367.43 83.020730 100.839807 0 9.69 <.0001
RunTime -3.030325 0.367167 -3.75093 -2.3097 903.54 -3.280042 -2.754668 0 -8.25 <.0001
RunPulse -0.079621 0.055231 -0.18815 0.0289 479.31 -0.135862 -0.024910 0 -1.44 0.1501



The resulting parameter estimates are identical to the estimates in Output 76.3.3 in Example 76.3. However, the standard errors are slightly different because in this example, maximum likelihood estimates for the standard errors are combined without the EDF= option, whereas in Example 76.3, unbiased estimates for the standard errors are combined with the EDF= option.