The MIANALYZE Procedure

Example 76.3 Reading Regression Results from a DATA= EST Data Set

This example creates an EST-type data set that contains regression coefficients and their corresponding covariance matrices computed from imputed data sets. These estimates are then combined to generate valid statistical inferences about the regression model.

The following statements use the REG procedure to generate regression coefficients for each imputed data set:

proc reg data=outmi outest=outreg covout noprint;
   model Oxygen= RunTime RunPulse;
   by _Imputation_;
run;

The following statements display (in Output 76.3.1) output regression coefficients and their covariance matrices from PROC REG for the first two imputed data sets:

proc print data=outreg(obs=8);
   var _Imputation_ _Type_ _Name_
      Intercept RunTime RunPulse;
   title 'REG Model Coefficients and Covariance Matrices'
         ' (First Two Imputations)';
run;

Output 76.3.1: EST-Type Data Set

REG Model Coefficients and Covariance Matrices (First Two Imputations)

Obs _Imputation_ _TYPE_ _NAME_ Intercept RunTime RunPulse
1 1 PARMS   86.544 -2.82231 -0.05873
2 1 COV Intercept 100.145 -0.53519 -0.55077
3 1 COV RunTime -0.535 0.10774 -0.00345
4 1 COV RunPulse -0.551 -0.00345 0.00343
5 2 PARMS   83.021 -3.00023 -0.02491
6 2 COV Intercept 79.032 -0.66765 -0.41918
7 2 COV RunTime -0.668 0.11456 -0.00313
8 2 COV RunPulse -0.419 -0.00313 0.00264



The following statements combine the results for the imputed data sets. The EDF= option is specified to request that the adjusted degrees of freedom be used in the analysis. For a regression model with three independent variables (including the Intercept) and 31 observations, the complete-data error degrees of freedom is 28.

proc mianalyze data=outreg edf=28;
   modeleffects Intercept RunTime RunPulse;
run;

Output 76.3.2: Variance Information

The MIANALYZE Procedure

Variance Information (25 Imputations)
Parameter Variance DF Relative
Increase
in Variance
Fraction
Missing
Information
Relative
Efficiency
Between Within Total
Intercept 22.485821 75.413875 98.799129 19.102 0.310092 0.240234 0.990482
RunTime 0.021126 0.124930 0.146902 21.823 0.175870 0.151147 0.993990
RunPulse 0.000656 0.002622 0.003304 20.042 0.260376 0.209393 0.991694



The "Variance Information" table in Output 76.3.2 displays the between-imputation, within-imputation, and total variances for combining complete-data inferences.

The "Parameter Estimates" table in Output 76.3.3 displays the estimated mean and standard error of the regression coefficients. The inferences are based on the t distribution. The table also displays a 95% mean confidence interval and a t test with the associated p-value for the hypothesis that the regression coefficient is equal to zero. Since the p-value for RunPulse is 0.1812, this variable can be removed from the regression model.

Output 76.3.3: Parameter Estimates

Parameter Estimates (25 Imputations)
Parameter Estimate Std Error 95% Confidence Limits DF Minimum Maximum Theta0 t for H0:
Parameter=Theta0
Pr > |t|
Intercept 92.700420 9.939775 71.90376 113.4971 19.102 83.020730 100.839807 0 9.33 <.0001
RunTime -3.030325 0.383278 -3.82557 -2.2351 21.823 -3.280042 -2.754668 0 -7.91 <.0001
RunPulse -0.079621 0.057482 -0.19951 0.0403 20.042 -0.135862 -0.024910 0 -1.39 0.1812