The UNIVARIATE Procedure

References

  • Blom, G. (1958), Statistical Estimates and Transformed Beta Variables, New York: John Wiley & Sons.

  • Bowman, K. O. and Shenton, L. R. (1983), “Johnson’s System of Distributions,” in S. Kotz, N. L. Johnson, and C. B. Read, eds., Encyclopedia of Statistical Sciences, volume 4, 303–314, New York: John Wiley & Sons.

  • Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983), Graphical Methods for Data Analysis, Belmont, CA: Wadsworth International Group.

  • Cohen, A. C. (1951), “Estimating Parameters of Logarithmic-Normal Distributions by Maximum Likelihood,” Journal of the American Statistical Association, 46, 206–212.

  • Conover, W. J. (1999), Practical Nonparametric Statistics, Third Edition, New York: John Wiley & Sons.

  • Croux, C. and Rousseeuw, P. J. (1992), “Time-Efficient Algorithms for Two Highly Robust Estimators of Scale,” Computational Statistics, 1, 411–428.

  • D’Agostino, R. B. and Stephens, M. (1986), Goodness-of-Fit Techniques, New York: Marcel Dekker.

  • Dixon, W. J. and Tukey, J. W. (1968), “Approximate Behavior of the Distribution of Winsorized t (Trimming/Winsorization 2),” Technometrics, 10, 83–98.

  • Elandt, R. C. (1961), “The Folded Normal Distribution: Two Methods of Estimating Parameters from Moments,” Technometrics, 3, 551–562.

  • Fisher, R. A. (1973), Statistical Methods for Research Workers, Fourteenth Edition, New York: Hafner Publishing.

  • Fowlkes, E. B. (1987), A Folio of Distributions: A Collection of Theoretical Quantile-Quantile Plots, New York: Marcel Dekker.

  • Hahn, G. J. and Meeker, W. Q. (1991), Statistical Intervals: A Guide for Practitioners, New York: John Wiley & Sons.

  • Hampel, F. R. (1974), “The Influence Curve and Its Role in Robust Estimation,” Journal of the American Statistical Association, 69, 383–393.

  • Iman, R. L. (1974), “Use of a t-Statistic as an Approximation to the Exact Distribution of the Wilcoxon Signed Rank Statistic,” Communications in Statistics, 3, 795–806.

  • Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994), Continuous Univariate Distributions, volume 1, Second Edition, New York: John Wiley & Sons.

  • Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995), Continuous Univariate Distributions, volume 2, Second Edition, New York: John Wiley & Sons.

  • Jones, M. C., Marron, J. S., and Sheather, S. J. (1996), “A Brief Survey of Bandwidth Selection for Density Estimation,” Journal of the American Statistical Association, 91, 401–407.

  • Lehmann, E. L. (1998), Nonparametrics: Statistical Methods Based on Ranks, San Francisco: Holden-Day.

  • Odeh, R. E. and Owen, D. B. (1980), Tables for Normal Tolerance Limits, Sampling Plans, and Screening, New York: Marcel Dekker.

  • Owen, D. B. and Hua, T. A. (1977), “Tables of Confidence Limits on the Tail Area of the Normal Distribution,” Communication and Statistics, Part B—Simulation and Computation, 6, 285–311.

  • Rousseeuw, P. J. and Croux, C. (1993), “Alternatives to the Median Absolute Deviation,” Journal of the American Statistical Association, 88, 1273–1283.

  • Royston, J. P. (1992), “Approximating the Shapiro-Wilks’ W Test for Nonnormality,” Statistics and Computing, 2, 117–119.

  • Shapiro, S. S. and Wilk, M. B. (1965), “An Analysis of Variance Test for Normality (Complete Samples),” Biometrika, 52, 591–611.

  • Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, New York: Chapman & Hall.

  • Slifker, J. F. and Shapiro, S. S. (1980), “The Johnson System: Selection and Parameter Estimation,” Technometrics, 22, 239–246.

  • Terrell, G. R. and Scott, D. W. (1985), “Oversmoothed Nonparametric Density Estimates,” Journal of the American Statistical Association, 80, 209–214.

  • Tukey, J. W. (1977), Exploratory Data Analysis, Reading, MA: Addison-Wesley.

  • Tukey, J. W. and McLaughlin, D. H. (1963), “Less Vulnerable Confidence and Significance Procedures for Location Based on a Single Sample: Trimming/Winsorization 1,” Sankhy$\bar{a}$, Series A, 25, 331–352.

  • Velleman, P. F. and Hoaglin, D. C. (1981), Applications, Basics, and Computing of Exploratory Data Analysis, Boston, MA: Duxbury Press.

  • Wainer, H. (1974), “The Suspended Rootogram and Other Visual Displays: An Empirical Validation,” The American Statistician, 28, 143–145.