You can use the PCTLDEF= option to specify one of five definitions for computing quantile statistics (percentiles). Suppose that n is the number of nonmissing values for a variable and that  represent the ordered values of the analysis variable. For the tth percentile, set
 represent the ordered values of the analysis variable. For the tth percentile, set  .
. 
         
For the following definitions numbered 1, 2, 3, and 5, express  as
 as 
         
![\[  np = j + g \]](images/statug_boxplot0016.png)
 where j is the integer part of  , and g is the fractional part of
, and g is the fractional part of  . For definition 4, let
. For definition 4, let 
         
![\[ (n+1)p=j+g \]](images/statug_boxplot0017.png)
The tth percentile (call it y) can be defined as follows:
weighted average at  
 
                  
![\[  y = (1 - g)x_ j + gx_{j+1}  \]](images/statug_boxplot0019.png)
 where  is taken to be
 is taken to be  .
. 
                  
observation numbered closest to  
 
                  
![\[ y = x_ i \]](images/statug_boxplot0022.png)
 where i is the integer part of  if
 if  . If
. If  , then
, then  if j is even, or
 if j is even, or  if j is odd.
 if j is odd. 
                  
empirical distribution function
![\[  y = x_ j ~  \mbox{if}~  g = 0  \]](images/statug_boxplot0028.png)
![\[  y=x_{j+1}~  \mbox{if}~  g > 0  \]](images/statug_boxplot0029.png)
weighted average aimed at  
 
                  
![\[  y=(1 - g)x_ j + gx_{j+1}  \]](images/statug_boxplot0031.png)
 where  is taken to be
 is taken to be  .
. 
                  
empirical distribution function with averaging
![\[  y = (x_ j + x_{j+1})/2 ~  \mbox{if}~  g = 0  \]](images/statug_boxplot0034.png)
![\[  y = x_{j+1}~  \mbox{if}~  g > 0  \]](images/statug_boxplot0035.png)