Table 5.1 summarizes the statements and options that control the HPSEVERITY procedure.
Table 5.1: HPSEVERITY Functional Summary
Description |
Statement |
Option |
---|---|---|
Statements |
||
Specifies the response variable to model along with censoring and truncation effects |
||
Specifies the weight variable |
||
Specifies the regression variables to model |
||
Specifies distributions to fit |
||
Specifies optimization options |
||
Specifies performance options |
||
Specifies programming statements that define an objective function |
||
Data Set Options |
||
Specifies that the OUTEST= data set contain covariance estimates |
||
Specifies the input data set |
||
Specifies the input data set for parameter estimates |
||
Specifies the output data set for parameter estimates |
||
Specifies the output data set for model information |
||
Specifies the output data set for statistics of fit |
||
Data Interpretation Options |
||
Specifies left-censoring |
||
Specifies left-truncation |
||
Specifies right-censoring |
||
Specifies right-truncation |
||
Model Estimation Options |
||
Specifies the model selection criterion |
||
Specifies the method for computing mixture distribution |
||
Specifies initial values for model parameters |
||
Specifies the objective function symbol |
||
Specifies the optimization technique |
||
Specifies the denominator for computing covariance estimates |
||
Optimization Termination Criteria |
||
Absolute function value criterion |
||
Absolute function difference convergence criterion |
||
Absolute gradient convergence criterion |
||
Absolute parameter convergence criterion |
||
Relative function convergence criterion |
||
Another relative function convergence criterion |
||
Used in FCONV, GCONV criterion |
||
Relative gradient convergence criterion |
||
Maximum number of function calls |
||
Maximum number of iterations |
||
Upper limit on CPU time in seconds |
||
Minimum number of iterations |
||
Relative parameter convergence criterion |
||
Used in XCONV criterion |
||
Empirical Distribution Function (EDF) Estimation Options |
||
Specifies the nonparametric method of CDF estimation |
||
Specifies the sample to be used for computing the EDF estimates |
||
EMPIRICALCDF=MODIFIEDKM Options |
||
Specifies the value for the lower bound on risk set size |
||
Specifies the value for the lower bound on risk set size |
||
Specifies the absolute lower bound on risk set size |
||
EMPIRICALCDF=TURNBULL Options |
||
Specifies that the final EDF estimates be maximum likelihood estimates |
||
Specifies the relative convergence criterion |
||
Specifies the maximum number of iterations |
||
Specifies the threshold below which an EDF estimate is deemed to be 0 |
||
Displayed Output Options |
||
Specifies that distributions be listed to the log without estimating any models that use them |
||
Suppresses all displayed output |
||
Specifies which output to display |
||
Specifies the verbosity of messages printed to the log |
||
Specifies that distributions be validated without estimating any models that use them |