Previous Page
|
Next Page
Examples
Previous Page
|
Next Page
The HPSEVERITY Procedure
Overview
Getting Started
A Simple Example of Fitting Predefined Distributions
An Example with Left-Truncation and Right-Censoring
An Example of Modeling Regression Effects
Syntax
Functional Summary
PROC HPSEVERITY Statement
DIST Statement
LOSS Statement
NLOPTIONS Statement
PERFORMANCE Statement
SCALEMODEL Statement
WEIGHT Statement
Programming Statements
Details
Predefined Distributions
Censoring and Truncation
Parameter Estimation Method
Details of Optimization Algorithms
Parameter Initialization
Estimating Regression Effects
Empirical Distribution Function Estimation Methods
Statistics of Fit
Distributed and Multithreaded Computation
Defining a Severity Distribution Model with the FCMP Procedure
Predefined Utility Functions
Custom Objective Functions
Input Data Sets
Output Data Sets
Displayed Output
Examples
Defining a Model for Gaussian Distribution
Defining a Model for the Gaussian Distribution with a Scale Parameter
Defining a Model for Mixed-Tail Distributions
Fitting a Scaled Tweedie Model with Regressors
Fitting Distributions to Interval-Censored Data
Benefits of Distributed and Multithreaded Computing
Estimating Parameters Using Cramér-von Mises Estimator
References
Examples: HPSEVERITY Procedure
5.1 Defining a Model for Gaussian Distribution
5.2 Defining a Model for the Gaussian Distribution with a Scale Parameter
5.3 Defining a Model for Mixed-Tail Distributions
5.4 Fitting a Scaled Tweedie Model with Regressors
5.5 Fitting Distributions to Interval-Censored Data
5.6 Benefits of Distributed and Multithreaded Computing
5.7 Estimating Parameters Using Cramér-von Mises Estimator
Previous Page
|
Next Page
|
Top of Page
Copyright © SAS Institute Inc. All Rights Reserved.
Previous Page
|
Next Page
|
Top of Page