Akaike, H. (1969). “Fitting Autoregressive Models for Prediction.” Annals of the Institute of Statistical Mathematics 21:243–247.
Allen, D. M. (1971). “Mean Square Error of Prediction as a Criterion for Selecting Variables.” Technometrics 13:469–475.
Allen, D. M., and Cady, F. B. (1982). Analyzing Experimental Data by Regression. Belmont, CA: Lifetime Learning Publications.
Amemiya, T. (1976). Selection of Regressors. Technical Report 225, Stanford University, Stanford, CA.
Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: John Wiley & Sons.
Berk, K. N. (1977). “Tolerance and Condition in Regression Computations.” Journal of the American Statistical Association 72:863–866.
Bock, R. D. (1975). Multivariate Statistical Methods in Behavioral Research. New York: McGraw-Hill.
Box, G. E. P. (1966). “The Use and Abuse of Regression.” Technometrics 8:625–629.
Cleveland, W. S. (1993). Visualizing Data. Summit, NJ: Hobart Press.
Cook, R. D. (1977). “Detection of Influential Observations in Linear Regression.” Technometrics 19:15–18.
Cook, R. D. (1979). “Influential Observations in Linear Regression.” Journal of the American Statistical Association 74:169–174.
Cook, R. D., and Weisberg, S. (1997). “Graphics for Assessing the Adequacy of Regression Models.” Journal of the American Statistical Association 92:490–499.
Daniel, C., and Wood, F. (1980). Fitting Equations to Data. Rev. ed. New York: John Wiley & Sons.
Darlington, R. B. (1968). “Multiple Regression in Psychological Research and Practice.” Psychological Bulletin 69:161–182.
Draper, N. R., and Smith, H. (1981). Applied Regression Analysis. 2nd ed. New York: John Wiley & Sons.
Durbin, J., and Watson, G. S. (1951). “Testing for Serial Correlation in Least Squares Regression.” Biometrika 37:409–428.
Freund, R. J., and Littell, R. C. (1986). SAS System for Regression. 1986 ed. Cary, NC: SAS Institute Inc.
Furnival, G. M., and Wilson, R. W. (1974). “Regression by Leaps and Bounds.” Technometrics 16:499–511.
Goodnight, J. H. (1979). “A Tutorial on the Sweep Operator.” American Statistician 33:149–158.
Hocking, R. R. (1976). “The Analysis and Selection of Variables in a Linear Regression.” Biometrics 32:1–50.
Johnston, J. (1972). Econometric Methods. 2nd ed. New York: McGraw-Hill.
Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.
Judge, G. G., Griffiths, W. E., Hill, R. C., Lütkepohl, H., and Lee, T.-C. (1985). The Theory and Practice of Econometrics. 2nd ed. New York: John Wiley & Sons.
Kennedy, W. J., Jr., and Gentle, J. E. (1980). Statistical Computing. New York: Marcel Dekker.
LaMotte, L. R. (1994). “A Note on the Role of Independence in t Statistics Constructed from Linear Statistics in Regression Models.” American Statistician 48:238–240.
Lewis, T., and Taylor, L. R. (1967). Introduction to Experimental Ecology. New York: Academic Press.
Long, J. S., and Ervin, L. H. (2000). “Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model.” American Statistician 54:217–224.
Lord, F. M. (1950). Efficiency of Prediction When a Progression Equation from One Sample Is Used in a New Sample. Research bulletin, Educational Testing Service, Princeton, NJ.
MacKinnon, J. G., and White, H. (1985). “Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties.” Journal of Econometrics 29:305–325.
Mallows, C. L. (1967). “Choosing a Subset Regression.” Bell Telephone Laboratories.
Mallows, C. L. (1973). “Some Comments on .” Technometrics 15:661–675.
Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.
Marquardt, D. W., and Snee, R. D. (1975). “Ridge Regression in Practice.” American Statistician 29:3–20.
Morrison, D. F. (1976). Multivariate Statistical Methods. 2nd ed. New York: McGraw-Hill.
Mosteller, F., and Tukey, J. W. (1977). Data Analysis and Regression. Reading, MA: Addison-Wesley.
Neter, J., Wasserman, W., and Kutner, M. H. (1990). Applied Linear Statistical Models. 3rd ed. Homewood, IL: Irwin.
Nicholson, G. E., Jr. (1948). The Application of a Regression Equation to a New Sample. Ph.D. diss., University of North Carolina at Chapel Hill.
Pillai, K. C. S. (1960). Statistical Table for Tests of Multivariate Hypotheses. Manila: University of Philippines Statistical Center.
Pindyck, R. S., and Rubinfeld, D. L. (1981). Econometric Models and Econometric Forecasts. 2nd ed. New York: McGraw-Hill.
Pringle, R. M., and Rayner, A. A. (1971). Generalized Inverse Matrices with Applications to Statistics. New York: Hafner Publishing.
Rao, C. R. (1973). Linear Statistical Inference and Its Applications. 2nd ed. New York: John Wiley & Sons.
Rawlings, J. O., Pantula, S. G., and Dickey, D. A. (1998). Applied Regression Analysis: A Research Tool. 2nd ed. New York: Springer-Verlag.
Reichler, J. L., ed. (1987). The 1987 Baseball Encyclopedia Update. New York: Macmillan.
Rothman, D. (1968). “Letter to the Editor.” Technometrics 10:432.
Sall, J. P. (1981). SAS Regression Applications. Technical Report A-102, SAS Institute Inc., Cary, NC.
Sawa, T. (1978). “Information Criteria for Discriminating among Alternative Regression Models.” Econometrica 46:1273–1282.
Schwarz, G. (1978). “Estimating the Dimension of a Model.” Annals of Statistics 6:461–464.
Stein, C. (1960). “Multiple Regression.” In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, edited by I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, and H. B. Mann, 264–305. Stanford, CA: Stanford University Press.
Time Inc. (1987). “What They Make.” Sports Illustrated (April 20): 54–81.
Timm, N. H. (1975). Multivariate Analysis with Applications in Education and Psychology. Monterey, CA: Brooks/Cole.
Weisberg, S. (1980). Applied Linear Regression. New York: John Wiley & Sons.
White, H. (1980). “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity.” Econometrica 48:817–838.