The NLMIXED Procedure

Example 82.3 Probit-Normal Model with Ordinal Data

The data for this example are from Ezzet and Whitehead (1991), who describe a crossover experiment on two groups of patients using two different inhaler devices (A and B). Patients from group 1 used device A for one week and then device B for another week. Patients from group 2 used the devices in reverse order. The data entered as a SAS data set are as follows:

data inhaler;
   input clarity group time freq @@;
   gt = group*time;
   sub = floor((_n_+1)/2);
   datalines;
1 0 0 59   1 0 1 59   1 0 0 35   2 0 1 35   1 0 0  3   3 0 1  3   1 0 0  2
4 0 1  2   2 0 0 11   1 0 1 11   2 0 0 27   2 0 1 27   2 0 0  2   3 0 1  2
2 0 0  1   4 0 1  1   4 0 0  1   1 0 1  1   4 0 0  1   2 0 1  1   1 1 0 63
1 1 1 63   1 1 0 13   2 1 1 13   2 1 0 40   1 1 1 40   2 1 0 15   2 1 1 15
3 1 0  7   1 1 1  7   3 1 0  2   2 1 1  2   3 1 0  1   3 1 1  1   4 1 0  2
1 1 1  2   4 1 0  1   3 1 1  1
;

The response measurement, clarity, is the patients’ assessment on the clarity of the leaflet instructions for the devices. The clarity variable is on an ordinal scale, with 1=easy, 2=only clear after rereading, 3=not very clear, and 4=confusing. The group variable indicates the treatment group, and the time variable indicates the time of measurement. The freq variable indicates the number of patients with exactly the same responses. A variable gt is created to indicate a group-by-time interaction, and a variable sub is created to indicate patients.

As in the previous example and in Hedeker and Gibbons (1994), assume an underlying latent continuous variable, here with the form

\[ y_{ij} = \beta _0 + \beta _1 g_ i + \beta _2 t_ j + \beta _3 g_ i t_ j + u_ i + e_{ij} \]

where i indexes patient and j indexes the time period, $g_ i$ indicates groups, $t_ j$ indicates time, $u_ i$ is a patient-level normal random effect, and $e_{ij}$ are iid normal errors. The $\beta $s are unknown coefficients to be estimated.

Instead of observing $y_{ij}$, however, you observe only whether it falls in one of the four intervals: ($-\infty $, 0), (0, I1), (I1, I1 + I2), or (I1 + I2, $\infty $), where I1 and I2 are both positive. The resulting category is the value assigned to the clarity variable.

The following code sets up and fits this ordinal probit model:

proc nlmixed data=inhaler corr ecorr;
   parms b0=0 b1=0 b2=0 b3=0 sd=1 i1=1 i2=1;
   bounds i1 > 0, i2 > 0;
   eta = b0 + b1*group + b2*time + b3*gt + u;
   if (clarity=1) then p = probnorm(-eta);
   else if (clarity=2) then
      p = probnorm(i1-eta) - probnorm(-eta);
   else if (clarity=3) then
      p = probnorm(i1+i2-eta) - probnorm(i1-eta);
   else p = 1 - probnorm(i1+i2-eta);
   if (p > 1e-8) then ll = log(p);
   else ll = -1e20;
   model clarity ~ general(ll);
   random u ~ normal(0,sd*sd) subject=sub;
   replicate freq;
   estimate 'thresh2' i1;
   estimate 'thresh3' i1 + i2;
   estimate 'icc' sd*sd/(1+sd*sd);
run;

The PROC NLMIXED statement specifies the input data set and requests correlations both for the parameter estimates (CORR option) and for the additional estimates specified with ESTIMATE statements (ECORR option).

The parameters as defined in the PARMS statement are as follows: b0 (overall intercept), b1 (group main effect), B2 (time main effect), b3 (group-by-time interaction), sd (standard deviation of the random effect), i1 (increment between first and second thresholds), and i2 (increment between second and third thresholds). The BOUNDS statement restricts i1 and i2 to be positive.

The SAS programming statements begin by defining the linear predictor eta, which is a linear combination of the b parameters and a single random effect u. The next statements define the ordinal likelihood according to the clarity variable, eta, and the increment variables. An error trap is included in case the likelihood becomes too small.

A general log-likelihood specification is used in the MODEL statement, and the RANDOM statement defines the random effect u to have standard deviation sd and subject variable sub. The REPLICATE statement indicates that data for each subject should be replicated according to the freq variable.

The ESTIMATE statements specify the second and third thresholds in terms of the increment variables (the first threshold is assumed to equal zero for model identifiability). Also computed is the intraclass correlation.

The output is as follows.

Output 82.3.1: Specifications for Ordinal Data Model

The NLMIXED Procedure

Specifications
Data Set WORK.INHALER
Dependent Variable clarity
Distribution for Dependent Variable General
Random Effects u
Distribution for Random Effects Normal
Subject Variable sub
Replicate Variable freq
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian Quadrature



The "Specifications" table echoes some primary information specified for this nonlinear mixed model (Output 82.3.1). Because the log-likelihood function was expressed with SAS programming statements, the distribution is displayed as General in the "Specifications" table.

The "Dimensions" table reveals a total of 286 subjects, which is the sum of the values of the FREQ variable for the second time point. Five quadrature points are selected for log-likelihood evaluation (Output 82.3.2).

Output 82.3.2: Dimensions Table for Ordinal Data Model

Dimensions
Observations Used 38
Observations Not Used 0
Total Observations 38
Subjects 286
Max Obs per Subject 2
Parameters 7
Quadrature Points 5



Output 82.3.3: Parameter Starting Values and Negative Log Likelihood

Initial Parameters
b0 b1 b2 b3 sd i1 i2 Negative
Log
Likelihood
0 0 0 0 1 1 1 538.484276



The "Parameters" table lists the simple starting values for this problem (Output 82.3.3). The "Iteration History" table indicates successful convergence in 13 iterations (Output 82.3.4).

Output 82.3.4: Iteration History

Iteration History
Iteration Calls Negative
Log
Likelihood
Difference Maximum
Gradient
Slope
1 4 476.3825 62.10176 43.7506 -1431.40
2 7 463.2282 13.15431 14.2465 -106.753
3 9 458.5281 4.70008 48.3132 -33.0389
4 11 450.9757 7.552383 22.6010 -40.9954
5 14 448.0127 2.963033 14.8688 -16.7453
6 17 447.2452 0.767549 7.77419 -2.26743
7 19 446.7277 0.517483 3.79353 -1.59278
8 22 446.5183 0.209396 0.86864 -0.37801
9 26 446.5145 0.003745 0.32857 -0.02356
10 29 446.5133 0.001187 0.056778 -0.00183
11 32 446.5133 0.000027 0.010785 -0.00004
12 35 446.5133 3.956E-6 0.004922 -5.41E-6
13 38 446.5133 1.989E-7 0.000470 -4E-7

NOTE: GCONV convergence criterion satisfied.



Output 82.3.5: Fit Statistics for Ordinal Data Model

Fit Statistics
-2 Log Likelihood 893.0
AIC (smaller is better) 907.0
AICC (smaller is better) 910.8
BIC (smaller is better) 932.6



The "Fit Statistics" table lists the log likelihood and information criteria for model comparisons (Output 82.3.5).

Output 82.3.6: Parameter Estimates at Convergence

Parameter Estimates
Parameter Estimate Standard
Error
DF t Value Pr > |t| 95% Confidence Limits Gradient
b0 -0.6364 0.1342 285 -4.74 <.0001 -0.9006 -0.3722 0.000470
b1 0.6007 0.1770 285 3.39 0.0008 0.2523 0.9491 0.000265
b2 0.6015 0.1582 285 3.80 0.0002 0.2900 0.9129 0.000080
b3 -1.4817 0.2385 285 -6.21 <.0001 -1.9512 -1.0122 0.000102
sd 0.6599 0.1312 285 5.03 <.0001 0.4017 0.9181 -0.00009
i1 1.7450 0.1474 285 11.84 <.0001 1.4548 2.0352 0.000202
i2 0.5985 0.1427 285 4.19 <.0001 0.3176 0.8794 0.000087



The "Parameter Estimates" table indicates significance of all the parameters (Output 82.3.6).

Output 82.3.7: Threshold and Intraclass Correlation Estimates

Additional Estimates
Label Estimate Standard
Error
DF t Value Pr > |t| Alpha Lower Upper
thresh2 1.7450 0.1474 285 11.84 <.0001 0.05 1.4548 2.0352
thresh3 2.3435 0.2073 285 11.31 <.0001 0.05 1.9355 2.7516
icc 0.3034 0.08402 285 3.61 0.0004 0.05 0.1380 0.4687



The "Additional Estimates" table displays results from the ESTIMATE statements (Output 82.3.7).