The FMM Procedure

References

  • Aldrich, J. (1997). “R. A. Fisher and the Making of Maximum Likelihood, 1912–1922.” Statistical Science 12:162–176.

  • Breslow, N. E. (1984). “Extra-Poisson Variation in Log-Linear Models.” Journal of the Royal Statistical Society, Series C 33:38–44.

  • Brier, S. S. (1980). “Analysis of Contingency Tables under Cluster Sampling.” Biometrika 67:591–596.

  • Cameron, A. C., and Trivedi, P. K. (1998). Regression Analysis of Count Data. Cambridge: Cambridge University Press.

  • Celeux, G., Forbes, F., Robert, C. P., and Titterington, D. M. (2006). “Deviance Information Criteria for Missing Data Models.” Bayesian Analysis 1:651–674.

  • Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). “Maximum Likelihood from Incomplete Data via the EM Algorithm.” Journal of the Royal Statistical Society, Series B 39:1–38.

  • Everitt, B. S., and Hand, D. J. (1981). Finite Mixture Distributions. London: Chapman & Hall.

  • Ferrari, S. L. P., and Cribari-Neto, F. (2004). “Beta Regression for Modelling Rates and Proportions.” Journal of Applied Statistics 31:799–815.

  • Fisher, R. A. (1921). “On the 'Probable Error' of a Coefficient of Correlation Deduced from a Small Sample.” Metron 1:3–32.

  • Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. New York: Springer.

  • Gamerman, D. (1997). “Sampling from the Posterior Distribution in Generalized Linear Models.” Statistics and Computing 7:57–68.

  • Geweke, J. (1992). “Evaluating the Accuracy of Sampling-Based Approaches to Calculating Posterior Moments.” In Bayesian Statistics, vol. 4, edited by J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, 169–193. Oxford: Clarendon Press.

  • Griffiths, D. A. (1973). “Maximum Likelihood Estimation for the Beta-Binomial Distribution and an Application to the Household Distribution of the Total Number of Cases of a Disease.” Biometrics 29:637–648.

  • Haseman, J. K., and Kupper, L. L. (1979). “Analysis of Dichotomous Response Data from Certain Toxicological Experiments.” Biometrics 35:281–293.

  • Heidelberger, P., and Welch, P. D. (1981). “A Spectral Method for Confidence Interval Generation and Run Length Control in Simulations.” Communications of the ACM 24:233–245.

  • Heidelberger, P., and Welch, P. D. (1983). “Simulation Run Length Control in the Presence of an Initial Transient.” Operations Research 31:1109–1144.

  • Joe, H., and Zhu, R. (2005). “Generalized Poisson Distribution: The Property of Mixture of Poisson and Comparison with Negative Binomial Distribution.” Biometrical Journal 47:219–229.

  • Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998). “Markov Chain Monte Carlo in Practice: A Roundtable Discussion.” American Statistician 52:93–100.

  • Koehler, K. J., and Wilson, J. R. (1986). “Chi-Square Tests for Comparing Vectors of Proportions for Several Cluster Samples.” Communications in Statistics—Theory and Methods 15:2977–2990.

  • Lawless, J. F. (1987). “Negative Binomial and Mixed Poisson Regression.” Canadian Journal of Statistics 15:209–225.

  • Margolin, B. H., Kaplan, N. L., and Zeiger, E. (1981). “Statistical Analysis of the Ames Salmonella Microsome Test.” Proceedings of the National Academy of Sciences 76:3779–3783.

  • McLachlan, G. J., and Peel, D. (2000). Finite Mixture Models. New York: John Wiley & Sons.

  • Morel, J. G., and Nagaraj, N. K. (1993). “A Finite Mixture Distribution for Modelling Multinomial Extra Variation.” Biometrika 80:363–371.

  • Morel, J. G., and Neerchal, N. K. (1997). “Clustered Binary Logistic Regression in Teratology Data Using a Finite Mixture Distribution.” Statistics in Medicine 16:2843–2853.

  • Neerchal, N. K., and Morel, J. G. (1998). “Large Cluster Results for Two Parametric Multinomial Extra Variation Models.” Journal of the American Statistical Association 93:1078–1087.

  • Pearson, K. (1915). “On Certain Types of Compound Frequency Distributions in Which the Components Can Be Individually Described by Binomial Series.” Biometrika 11:139–144.

  • Raftery, A. E. (1996). “Hypothesis Testing and Model Selection.” In Markov Chain Monte Carlo in Practice, edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, 163–188. London: Chapman & Hall.

  • Raftery, A. E., and Lewis, S. M. (1992). “One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo.” Statistical Science 7:493–497.

  • Raftery, A. E., and Lewis, S. M. (1995). “The Number of Iterations, Convergence Diagnostics, and Generic Metropolis Algorithms.” In Markov Chain Monte Carlo in Practice, edited by W. R. Gilks, D. J. Spiegelhalter, and S. Richardson, 115–130. London: Chapman & Hall.

  • Richardson, S. (2002). “Discussion of Spiegelhalter et al.” Journal of the Royal Statistical Society, Series B 64:631.

  • Roeder, K. (1990). “Density Estimation with Confidence Sets Exemplified by Superclusters and Voids in the Galaxies.” Journal of the American Statistical Association 85:617–624.

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van der Linde, A. (2002). “Bayesian Measures of Model Complexity and Fit.” Journal of the Royal Statistical Society, Series B 64:583–616. With discussion.

  • Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985). Statistical Analysis of Finite Mixture Distributions. New York: John Wiley & Sons.

  • Viallefont, V., Richardson, S., and Greene, P. J. (2002). “Bayesian Analysis of Poisson Mixtures.” Journal of Nonparametric Statistics 14:181–202.

  • Wang, P., Puterman, M. L., Cockburn, I., and Le, N. (1996). “Mixed Poisson Regression Models with Covariate Dependent Rates.” Biometrics 52:381–400.

  • Williams, D. A. (1975). “The Analysis of Binary Responses from Toxicological Experiments Involving Reproduction and Teratogenicity.” Biometrics 31:949–952.

  • Wilson, J. R. (1989). “Chi-Square Tests for Overdispersion with Multiparameter Estimates.” Journal of the Royal Statistical Society, Series C 38:441–453.