The UNIVARIATE Procedure

References

  • Blom, G. (1958). Statistical Estimates and Transformed Beta Variables. New York: John Wiley & Sons.

  • Bowman, K. O., and Shenton, L. R. (1983). “Johnson’s System of Distributions.” In Encyclopedia of Statistical Sciences, vol. 4, edited by S. Kotz, N. L. Johnson, and C. B. Read. New York: John Wiley & Sons.

  • Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983). Graphical Methods for Data Analysis. Belmont, CA: Wadsworth International Group.

  • Cohen, A. C. (1951). “Estimating Parameters of Logarithmic-Normal Distributions by Maximum Likelihood.” Journal of the American Statistical Association 46:206–212.

  • Conover, W. J. (1980). Practical Nonparametric Statistics. 2nd ed. New York: John Wiley & Sons.

  • Croux, C., and Rousseeuw, P. J. (1992). “Time-Efficient Algorithms for Two Highly Robust Estimators of Scale.” Computational Statistics 1:411–428.

  • D’Agostino, R. B., and Stephens, M., eds. (1986). Goodness-of-Fit Techniques. New York: Marcel Dekker.

  • Dixon, W. J., and Tukey, J. W. (1968). “Approximate Behavior of the Distribution of Winsorized t (Trimming/Winsorization 2).” Technometrics 10:83–98.

  • Elandt, R. C. (1961). “The Folded Normal Distribution: Two Methods of Estimating Parameters from Moments.” Technometrics 3:551–562.

  • Fisher, R. A. (1973). Statistical Methods for Research Workers. 14th ed. New York: Hafner Publishing.

  • Fowlkes, E. B. (1987). A Folio of Distributions: A Collection of Theoretical Quantile-Quantile Plots. New York: Marcel Dekker.

  • Hahn, G. J., and Meeker, W. Q. (1991). Statistical Intervals: A Guide for Practitioners. New York: John Wiley & Sons.

  • Hampel, F. R. (1974). “The Influence Curve and Its Role in Robust Estimation.” Journal of the American Statistical Association 69:383–393.

  • Iman, R. L. (1974). “Use of a t-Statistic as an Approximation to the Exact Distribution of the Wilcoxon Signed Rank Statistic.” Communications in Statistics 3:795–806.

  • Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate Distributions. 2nd ed. Vol. 1. New York: John Wiley & Sons.

  • Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995). Continuous Univariate Distributions. 2nd ed. Vol. 2. New York: John Wiley & Sons.

  • Jones, M. C., Marron, J. S., and Sheather, S. J. (1996). “A Brief Survey of Bandwidth Selection for Density Estimation.” Journal of the American Statistical Association 91:401–407.

  • Lehmann, E. L., and D’Abrera, H. J. M. (1975). Nonparametrics: Statistical Methods Based on Ranks. San Francisco: Holden-Day.

  • Odeh, R. E., and Owen, D. B. (1980). Tables for Normal Tolerance Limits, Sampling Plans, and Screening. New York: Marcel Dekker.

  • Owen, D. B., and Hua, T. A. (1977). “Tables of Confidence Limits on the Tail Area of the Normal Distribution.” Communications in Statistics—Simulation and Computation 6:285–311.

  • Rousseeuw, P. J., and Croux, C. (1993). “Alternatives to the Median Absolute Deviation.” Journal of the American Statistical Association 88:1273–1283.

  • Royston, J. P. (1992). “Approximating the Shapiro-Wilk W Test for Nonnormality.” Statistics and Computing 2:117–119.

  • Shapiro, S. S., and Wilk, M. B. (1965). “An Analysis of Variance Test for Normality (Complete Samples).” Biometrika 52:591–611.

  • Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. New York: Chapman & Hall.

  • Slifker, J. F., and Shapiro, S. S. (1980). “The Johnson System: Selection and Parameter Estimation.” Technometrics 22:239–246.

  • Terrell, G. R., and Scott, D. W. (1985). “Oversmoothed Nonparametric Density Estimates.” Journal of the American Statistical Association 80:209–214.

  • Tukey, J. W. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.

  • Tukey, J. W., and McLaughlin, D. H. (1963). “Less Vulnerable Confidence and Significance Procedures for Location Based on a Single Sample: Trimming/Winsorization 1.” Sankhy$\bar{a}$, Series A 25:331–352.

  • Velleman, P. F., and Hoaglin, D. C. (1981). Applications, Basics, and Computing of Exploratory Data Analysis. Boston: Duxbury Press.

  • Wainer, H. (1974). “The Suspended Rootogram and Other Visual Displays: An Empirical Validation.” American Statistician 28:143–145.