
Stochastic frontier production models were first developed by Aigner, Lovell, and Schmidt (1977); Meeusen and van den Broeck (1977). Specification of these models allow for random shocks of the production or cost but also include a term for technological or cost inefficiency. Assuming that the production function takes a log-linear Cobb-Douglas form, the stochastic frontier production model can be written as
![\[ ln({y_ i}) = \beta _0+\sum _{n} \bbeta _ n\ln (x_{ni})+\epsilon _ i \]](images/etsug_qlim0143.png)
where
. The
term represents the stochastic error component and
is the nonnegative, technology inefficiency error component. The
error component is assumed to be distributed iid normal and independently from
. Given that
, the error term,
, is negatively skewed and represents technology inefficiency. For the stochastic frontier cost model,
. The
term represents the stochastic error component and
is the nonnegative, cost inefficiency error component. Given that
, the error term,
, is positively skewed and represents cost inefficiency. PROC QLIM models the
error component as a half normal, exponential, or truncated normal distribution.
In case of the normal-half normal model,
is iid
,
is iid
with
and
independent of each other. Given the independence of error terms, the joint density of v and u can be written as
![\[ f(u,v) = \frac{2}{2\pi \sigma _ u\sigma _ v} \exp \left\{ -\frac{u^2}{2\sigma _ u^2} - \frac{v^2}{2\sigma _ v^2} \right\} \]](images/etsug_qlim0152.png)
Substituting
into the preceding equation gives
![\[ f(u,\epsilon ) = \frac{2}{2\pi \sigma _ u\sigma _ v} \exp \left\{ -\frac{u^2}{2\sigma _ u^2} - \frac{(\epsilon +u)^2}{2\sigma _ v^2} \right\} \]](images/etsug_qlim0154.png)
Integrating u out to obtain the marginal density function of
results in the following form:
![\begin{eqnarray*} f(\epsilon ) & = & \int ^\infty _0 f(u,\epsilon )du \\ & = & \frac{2}{\sqrt {2\pi }\sigma } \left[ 1-\Phi \left( \frac{\epsilon \lambda }{\sigma } \right) \right] \exp \left\{ -\frac{\epsilon ^2}{2\sigma ^2} \right\} \\ & = & \frac{2}{\sigma }\phi \left( \frac{\epsilon }{\sigma } \right) \Phi \left( -\frac{\epsilon \lambda }{\sigma } \right) \end{eqnarray*}](images/etsug_qlim0155.png)
where
and
.
In the case of a stochastic frontier cost model,
and
![\[ f(\epsilon ) = \frac{2}{\sigma }\phi \left( \frac{\epsilon }{\sigma } \right) \Phi \left( \frac{\epsilon \lambda }{\sigma } \right) \]](images/etsug_qlim0159.png)
The log-likelihood function for the production model with N producers is written as
![\[ \ln L = constant - N \ln \sigma +\sum _ i{ \ln \Phi \left( -\frac{\epsilon _ i\lambda }{\sigma } \right) } -\frac{1}{2\sigma ^2}\sum _ i \epsilon ^2_ i \]](images/etsug_qlim0160.png)
Under the normal-exponential model,
is iid
and
is iid exponential with scale parameter
. Given the independence of error term components
and
, the joint density of v and u can be written as
![\[ f(u,v) = \frac{1}{\sqrt {2\pi }\sigma _ u\sigma _ v} \exp \left\{ -\frac{u}{\sigma _ u} - \frac{v^2}{2\sigma _ v^2} \right\} \]](images/etsug_qlim0162.png)
The marginal density function of
for the production function is

and the marginal density function for the cost function is equal to
![\[ f(\epsilon ) = \left( \frac{1}{\sigma _ u} \right) \Phi \left( \frac{\epsilon }{\sigma _ v}-\frac{\sigma _ v}{\sigma _ u} \right) \exp \left\{ -\frac{\epsilon }{\sigma _ u}+\frac{\sigma _ v^2}{2\sigma _ u^2} \right\} \]](images/etsug_qlim0164.png)
The log-likelihood function for the normal-exponential production model with N producers is
![\[ \ln L = constant - N \ln \sigma _ u+N\left( \frac{\sigma _ v^2}{2\sigma _ u^2} \right) +\sum _ i\frac{\epsilon _ i}{\sigma _ u} +\sum _ i\ln \Phi \left( -\frac{\epsilon _ i}{\sigma _ v}-\frac{\sigma _ v}{\sigma _ u} \right) \]](images/etsug_qlim0165.png)
The normal-truncated normal model is a generalization of the normal-half normal model by allowing the mean of
to differ from zero. Under the normal-truncated normal model, the error term component
is iid
and
is iid
. The joint density of
and
can be written as
![\[ f(u,v) = \frac{1}{ 2\pi \sigma _ u\sigma _ v\Phi \left( \mu /\sigma _ u \right) } \exp \left\{ -\frac{(u-\mu )^2}{2\sigma _ u^2}-\frac{v^2}{2\sigma _ v^2} \right\} \]](images/etsug_qlim0167.png)
The marginal density function of
for the production function is
![\begin{eqnarray*} f(\epsilon ) & = & \int ^\infty _0 f(u,\epsilon )du \\ & = & \frac{1}{ \sqrt {2\pi }\sigma \Phi \left( \mu /\sigma _ u \right) } \Phi \left( \frac{\mu }{\sigma \lambda }-\frac{\epsilon \lambda }{\sigma } \right) \exp \left\{ -\frac{(\epsilon +\mu )^2}{2\sigma ^2} \right\} \\ & = & \frac{1}{\sigma }\phi \left( \frac{\epsilon +\mu }{\sigma } \right) \Phi \left( \frac{\mu }{\sigma \lambda }-\frac{\epsilon \lambda }{\sigma } \right) \left[ \Phi \left( \frac{\mu }{\sigma _ u} \right) \right]^{-1} \end{eqnarray*}](images/etsug_qlim0168.png)
and the marginal density function for the cost function is
![\begin{eqnarray*} f(\epsilon ) & = & \frac{1}{\sigma }\phi \left( \frac{\epsilon -\mu }{\sigma } \right) \Phi \left( \frac{\mu }{\sigma \lambda }+\frac{\epsilon \lambda }{\sigma } \right) \left[ \Phi \left( \frac{\mu }{\sigma _ u} \right) \right]^{-1} \end{eqnarray*}](images/etsug_qlim0169.png)
The log-likelihood function for the normal-truncated normal production model with N producers is

For more detail on normal-half normal, normal-exponential, and normal-truncated models, see Kumbhakar and Lovell (2000); Coelli, Prasada Rao, and Battese (1998).