The GAMPL Procedure

References

  • Asuncion, A., and Newman, D. J. (2007). “UCI Machine Learning Repository.” http://archive.ics.uci.edu/ml/.

  • Bowman, A. W., and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. New York: Oxford University Press.

  • Craven, P., and Wahba, G. (1979). “Smoothing Noisy Data with Spline Functions.” Numerical Mathematics 31:377–403.

  • Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981). “An Adaptive Nonlinear Least-Squares Algorithm.” ACM Transactions on Mathematical Software 7:348–368.

  • Dennis, J. E., and Mei, H. H. W. (1979). “Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values.” Journal of Optimization Theory and Applications 28:453–482.

  • Duchon, J. (1976). “Fonctions-spline et espérances conditionnelles de champs gaussiens.” Annales scientifiques de l’Université de Clermont-Ferrand 2, Série Mathématique 14:19–27.

  • Duchon, J. (1977). “Splines Minimizing Rotation-Invariant Semi-norms in Sobolev Spaces.” In Constructive Theory of Functions of Several Variables, edited by W. Schempp, and K. Zeller, 85–100. New York: Springer-Verlag.

  • Eskow, E., and Schnabel, R. B. (1991). “Algorithm 695: Software for a New Modified Cholesky Factorization.” ACM Transactions on Mathematical Software 17:306–312.

  • Fletcher, R. (1987). Practical Methods of Optimization. 2nd ed. Chichester, UK: John Wiley & Sons.

  • Gay, D. M. (1983). “Subroutines for Unconstrained Minimization.” ACM Transactions on Mathematical Software 9:503–524.

  • Gu, C., and Wahba, G. (1991). “Minimizing GCV/GML Scores with Multiple Smoothing Parameters via the Newton Method.” SIAM Journal on Scientific Computing 12:383–398.

  • Moré, J. J., and Sorensen, D. C. (1983). “Computing a Trust-Region Step.” SIAM Journal on Scientific and Statistical Computing 4:553–572.

  • Nelder, J. A., and Wedderburn, R. W. M. (1972). “Generalized Linear Models.” Journal of the Royal Statistical Society, Series A 135:370–384.

  • Nychka, D. (1988). “Bayesian Confidence Intervals for Smoothing Splines.” Journal of the American Statistical Association 83:1134–1143.

  • Pace, R. K., and Barry, R. (1997). “Quick Computation of Spatial Autoregressive Estimators.” Geographical Analysis 29:232–247.

  • Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression. Cambridge: Cambridge University Press.

  • Vlachos, P. (1998). “StatLib—Datasets Archive.” http://lib.stat.cmu.edu/datasets/.

  • Wahba, G. (1983). “Bayesian 'Confidence Intervals' for the Cross Validated Smoothing Spline.” Journal of the Royal Statistical Society, Series B 45:133–150.

  • Wood, S. (2003). “Thin Plate Regression Splines.” Journal of the Royal Statistical Society, Series B 65:95–114.

  • Wood, S. (2004). “Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models.” Journal of the American Statistical Association 99:673–686.

  • Wood, S. (2006). Generalized Additive Models. Boca Raton, FL: Chapman & Hall/CRC.

  • Wood, S. (2008). “Fast Stable Direct Fitting and Smoothness Selection for Generalized Additive Models.” Journal of the Royal Statistical Society, Series B 70:495–518.

  • Wood, S. (2011). “Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models.” Journal of the Royal Statistical Society, Series B 73:3–36.

  • Wood, S. (2012). “On p-Values for Smooth Components of an Extended Generalized Additive Model.” Biometrika 1–8. http://biomet.oxfordjournals.org/content/early/2012/10/18/biomet.ass048.abstract.

  • Xiang, D., and Wahba, G. (1996). “A Generalized Approximate Cross Validation for Smoothing Splines with Non-Gaussian Data.” Statistica Sinica 6:675–692.