The TRANSREG Procedure

References

  • Akaike, H. (1973). “Information Theory and an Extension of the Maximum Likelihood Principle.” In Proceedings of the Second International Symposium on Information Theory, edited by B. N. Petrov, and F. Csáki, 267–281. Budapest: Akademiai Kiado.

  • Box, G. E. P., and Cox, D. R. (1964). “An Analysis of Transformations.” Journal of the Royal Statistical Society, Series B 26:211–234.

  • Breiman, L., and Friedman, J. H. (1985). “Estimating Optimal Transformations for Multiple Regression and Correlation.” Journal of the American Statistical Association 77:580–619. With discussion.

  • Brent, R. P. (1973). Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ: Prentice-Hall. Chapter 5.

  • Brinkman, N. D. (1981). “Ethanol Fuel: A Single-Cylinder Engine Study of Efficiency and Exhaust Emissions.” Society of Automotive Engineers Transactions 90:1410–1424.

  • Carroll, J. D. (1972). “Individual Differences and Multidimensional Scaling.” In Multidimensional Scaling: Theory and Applications in the Behavioral Sciences, vol. 1, edited by R. N. Shepard, A. K. Romney, and S. B. Nerlove, 105–155. New York: Seminar Press.

  • Craven, P., and Wahba, G. (1979). “Smoothing Noisy Data with Spline Functions.” Numerical Mathematics 31:377–403.

  • De Boor, C. (1978). A Practical Guide to Splines. New York: Springer-Verlag.

  • De Leeuw, J. (1986). Regression with Optimal Scaling of the Dependent Variable. Leiden, Netherlands: Department of Data Theory, University of Leiden.

  • De Leeuw, J., Young, F. W., and Takane, Y. (1976). “Additive Structure in Qualitative Data: An Alternating Least Squares Approach with Optimal Scaling Features.” Psychometrika 41:471–503.

  • Draper, N. R., and Smith, H. (1981). Applied Regression Analysis. 2nd ed. New York: John Wiley & Sons.

  • Eilers, P. H. C., and Marx, B. D. (1996). “Flexible Smoothing with B-Splines and Penalties.” Statistical Science 11:89–121. With discussion.

  • Fisher, R. A. (1938). Statistical Methods for Research Workers. 10th ed. Edinburgh: Oliver & Boyd.

  • Gabriel, K. R. (1981). “Biplot Display of Multivariate Matrices for Inspection of Data and Diagnosis.” In Interpreting Multivariate Data, edited by V. Barnett, 571–572. Chichester, UK: John Wiley & Sons.

  • Gifi, A. (1990). Nonlinear Multivariate Analysis. New York: John Wiley & Sons.

  • Green, P. E., and Wind, Y. (1975). “New Way to Measure Consumers’ Judgments.” Harvard Business Review 53:107–117.

  • Hastie, T. J., and Tibshirani, R. J. (1986). “Generalized Additive Models.” Statistical Science 3:297–318.

  • Hurvich, C. M., Simonoff, J. S., and Tsai, C.-L. (1998). “Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion.” Journal of the Royal Statistical Society, Series B 60:271–293.

  • Israels, A. Z. (1984). “Redundancy Analysis for Qualitative Variables.” Psychometrika 49:331–346.

  • Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

  • Khuri, A. I., and Cornell, J. A. (1987). Response Surfaces. New York: Marcel Dekker.

  • Kruskal, J. B. (1964). “Nonmetric Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis.” Psychometrika 29:1–27.

  • Kuhfeld, W. F. (2010). Marketing Research Methods in SAS. Technical report, SAS Institute Inc., Cary, NC. http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html.

  • Myers, R. H. (1976). Response Surface Methodology. Blacksburg: Virginia Polytechnic Institute and State University.

  • National Institute of Standards and Technology (1998). “Statistical Reference Data Sets.” Accessed June 6, 2011. http://www.itl.nist.gov/div898/strd/general/dataarchive.html.

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1989). Numerical Recipes in PASCAL. Cambridge: Cambridge University Press.

  • Reinsch, C. H. (1967). “Smoothing by Spline Functions.” Numerische Mathematik 10:177–183.

  • SAS Institute Inc. (1993). Algorithms for the PRINQUAL and TRANSREG Procedures. Technical Report R-108, SAS Institute Inc., Cary, NC. http://support.sas.com/publishing/pubcat/techreports/59040.pdf.

  • Schiffman, S. S., Reynolds, M. L., and Young, F. W. (1981). Introduction to Multidimensional Scaling. New York: Academic Press.

  • Schwarz, G. (1978). “Estimating the Dimension of a Model.” Annals of Statistics 6:461–464.

  • Siegel, S. (1956). Nonparametric Statistics. New York: McGraw-Hill.

  • Smith, P. L. (1979). “Splines as a Useful and Convenient Statistical Tool.” American Statistician 33:57–62.

  • Stewart, D. K., and Love, W. A. (1968). “A General Canonical Correlation Index.” Psychological Bulletin 70:160–163.

  • Van der Burg, E., and de Leeuw, J. (1983). “Non-linear Canonical Correlation.” British Journal of Mathematical and Statistical Psychology 36:54–80.

  • Van Rijckevorsel, J. L. (1982). “Canonical Analysis with B-Splines.” In COMPUSTAT 1982, Part I, edited by H. Caussinus, P. Ettinger, and R. Tomassone, 393–398. Vienna: Physica-Verlag.

  • Winsberg, S., and Ramsay, J. O. (1980). “Monotonic Transformations to Additivity Using Splines.” Biometrika 67:669–674.

  • Young, F. W. (1981). “Quantitative Analysis of Qualitative Data.” Psychometrika 46:357–388.

  • Young, F. W., de Leeuw, J., and Takane, Y. (1976). “Regression with Qualitative and Quantitative Variables: An Alternating Least Squares Approach with Optimal Scaling Features.” Psychometrika 41:505–529.