The TPSPLINE Procedure

References

  • Andrews, D. W. K. (1988). Asymptotic Optimality of Generalized $C_ L$, Cross-validation, and Generalized Cross-validation in Regression with Heteroskedastic Errors. Cowles Foundation Discussion Paper 906, Cowles Foundation for Research in Economics at Yale University. Revised May 1989.

  • Bates, D. M., Lindstrom, M. J., Wahba, G., and Yandell, B. S. (1987). “GCVPACK-Routines for Generalized Cross Validation.” Communications in Statistics—Simulation and Computation 16:263–297.

  • Cleveland, W. S. (1993). Visualizing Data. Summit, NJ: Hobart Press.

  • Dongarra, J. J., Bunch, J. R., Moler, C. B., and Steward, G. W. (1979). Linpack Users’ Guide. Philadelphia: Society for Industrial and Applied Mathematics.

  • Duchon, J. (1976). “Fonctions-spline et espérances conditionnelles de champs gaussiens.” Annales scientifiques de l’Université de Clermont-Ferrand 2, Série Mathématique 14:19–27.

  • Duchon, J. (1977). “Splines Minimizing Rotation-Invariant Semi-norms in Sobolev Spaces.” In Constructive Theory of Functions of Several Variables, edited by W. Schempp, and K. Zeller, 85–100. New York: Springer-Verlag.

  • Hall, P., and Titterington, D. M. (1987). “Common Structure of Techniques for Choosing Smoothing Parameters in Regression Problems.” Journal of the Royal Statistical Society, Series B 49:184–198.

  • Houghton, A. N., Flannery, J., and Viola, M. V. (1980). “Malignant Melanoma in Connecticut and Denmark.” International Journal of Cancer 25:95–104.

  • Hutchinson, M., and Bischof, R. (1983). “A New Method for Estimating the Spatial Distribution of Mean Seasonal and Annual Rainfall Applied to the Hunter Valley.” Australian Meteorological Magazine 31:179–184.

  • Meinguet, J. (1979). “Multivariate Interpolation at Arbitrary Points Made Simple.” Journal of Applied Mathematics and Physics 30:292–304.

  • Nychka, D. (1986a). The Average Posterior Variance of a Smoothing Spline and a Consistent Estimate of the Mean Square Error. Technical Report 168, North Carolina State University.

  • Nychka, D. (1986b). A Frequency Interpretation of Bayesian "Confidence" Interval for Smoothing Splines. Technical Report 169, North Carolina State University.

  • Nychka, D. (1988). “Bayesian Confidence Intervals for Smoothing Splines.” Journal of the American Statistical Association 83:1134–1143.

  • O’Sullivan, F., and Wong, T. (1987). Determining a Function Diffusion Coefficient in the Heat Equation. Technical report, Department of Statistics, University of California, Berkeley.

  • Ramsay, J. O., and Silverman, B. W. (1997). Functional Data Analysis. New York: Springer-Verlag.

  • Seaman, R., and Hutchinson, M. (1985). “Comparative Real Data Tests of Some Objective Analysis Methods by Withholding.” Australian Meteorological Magazine 33:37–46.

  • Villalobos, M., and Wahba, G. (1987). “Inequality Constrained Multivariate Smoothing Splines with Application to the Estimation of Posterior Probabilities.” Journal of the American Statistical Association 82:239–248.

  • Wahba, G. (1983). “Bayesian 'Confidence Intervals' for the Cross Validated Smoothing Spline.” Journal of the Royal Statistical Society, Series B 45:133–150.

  • Wahba, G. (1990). Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.

  • Wahba, G., and Wendelberger, J. (1980). “Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation.” Monthly Weather Review 108:1122–1145.

  • Wang, Y., and Wahba, G. (1995). “Bootstrap Confidence Intervals for Smoothing Splines and Their Comparison to Bayesian Confidence Intervals.” Journal of Statistical Computation and Simulation 51:263–279.