The NLIN Procedure

References

  • Bard, Y. (1970). “Comparison of Gradient Methods for the Solution of the Nonlinear Parameter Estimation Problem.” SIAM Journal on Numerical Analysis 7:157–186.

  • Bard, Y. (1974). Nonlinear Parameter Estimation. New York: Academic Press.

  • Bates, D. M., and Watts, D. G. (1980). “Relative Curvature Measures of Nonlinearity (with Discussion).” Journal of the Royal Statistical Society, Series B 42:1–25.

  • Bates, D. M., and Watts, D. G. (1981). “A Relative Offset Orthogonality Convergence Criterion for Nonlinear Least Squares.” Technometrics 23:179–183.

  • Bates, D. M., and Watts, D. G. (1988). Nonlinear Regression Analysis and Its Applications. New York: John Wiley & Sons.

  • Beaton, A. E., and Tukey, J. W. (1974). “The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data.” Technometrics 16:147–185.

  • Box, M. J. (1971). “Bias in Nonlinear Estimation (with Discussion).” Journal of the Royal Statistical Society, Series B 33:171–201.

  • Charnes, A., Frome, E. L., and Yu, P. L. (1976). “The Equivalence of Generalized Least Squares and Maximum Likelihood Estimation in the Exponential Family.” Journal of the American Statistical Association 71:169–171.

  • Clarke, G. P. Y. (1987). “Approximate Confidence Limits for a Parameter Function in Nonlinear Regression.” Journal of the American Statistical Association 82:221–230.

  • Cook, R. D., and Tsai, C.-L. (1985). “Residuals in Nonlinear Regression.” Biometrika 72:23–29.

  • Cook, R. D., and Weisberg, S. (1990). “Confidence Curves in Nonlinear Regression.” Journal of the American Statistical Association 85:544–551.

  • Cox, D. R. (1970). Analysis of Binary Data. London: Metheun.

  • DiCiccio, T. J., and Efron, B. (1996). “Bootstrap Confidence Intervals.” Statistical Science 11:189–212.

  • Donaldson, J. R., and Schnabel, R. B. (1987). “Computational Experience with Confidence Regions and Confidence Intervals for Nonlinear Least Squares.” Technometrics 29:67–82.

  • Finney, D. J. (1971). Probit Analysis. 3rd ed. Cambridge: Cambridge University Press.

  • Gallant, A. R. (1975). “Nonlinear Regression.” American Statistician 29:73–81.

  • Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical Optimization. New York: Academic Press.

  • Goodnight, J. H. (1979). “A Tutorial on the Sweep Operator.” American Statistician 33:149–158.

  • Hartley, H. O. (1961). “The Modified Gauss-Newton Method for the Fitting of Non-linear Regression Functions by Least Squares.” Technometrics 3:269–280.

  • Holland, P. W., and Welsch, R. E. (1977). “Robust Regression Using Iteratively Reweighted Least-Squares.” Communications in Statistics—Theory and Methods 6:813–827.

  • Hougaard, P. (1982). “Parameterizations of Nonlinear Models.” Journal of the Royal Statistical Society, Series B 44:244–252.

  • Hougaard, P. (1985). “The Appropriateness of the Asymptotic Distribution in a Nonlinear Regression Model in Relation to Curvature.” Journal of the Royal Statistical Society, Series B 47:103–114.

  • Huber, P. J. (1964). “Robust Estimation of a Location Parameter.” Annals of Mathematical Statistics 35:73–101.

  • Huber, P. J. (1973). “Robust Regression: Asymptotics, Conjectures, and Monte Carlo.” Annals of Statistics 1:799–821.

  • Jennrich, R. I. (1969). “Asymptotic Properties of Nonlinear Least Squares Estimators.” Annals of Mathematical Statistics 40:633–643.

  • Jennrich, R. I., and Moore, R. H. (1975). “Maximum Likelihood Estimation by Means of Nonlinear Least Squares.” American Statistical Association, 1975 Proceedings of the Statistical Computing Section 57–65.

  • Jennrich, R. I., and Sampson, P. F. (1968). “Application of Stepwise Regression to Nonlinear Estimation.” Technometrics 10:63–72.

  • Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

  • Kennedy, W. J., Jr., and Gentle, J. E. (1980). Statistical Computing. New York: Marcel Dekker.

  • Lee, E. T. (1974). “A Computer Program for Linear Logistic Regression Analysis.” Computer Programs in Biomedicine 4:80–92.

  • MacKinnon, J. G. (2002). “Bootstrap Inference in Econometrics.” Canadian Journal of Economics 35:615–645.

  • Marquardt, D. W. (1963). “An Algorithm for Least-Squares Estimation of Nonlinear Parameters.” Journal of the Society for Industrial and Applied Mathematics 11:431–441.

  • McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. London: Chapman & Hall.

  • Nelder, J. A., and Wedderburn, R. W. M. (1972). “Generalized Linear Models.” Journal of the Royal Statistical Society, Series A 135:370–384.

  • Pinheiro, J. C., and Bates, D. M. (1995). “Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model.” Journal of Computational and Graphical Statistics 4:12–35.

  • Pringle, R. M., and Rayner, A. A. (1971). Generalized Inverse Matrices with Applications to Statistics. New York: Hafner Publishing.

  • Ratkowsky, D. (1983). Nonlinear Regression Modeling. New York: Marcel Dekker.

  • Ratkowsky, D. (1990). Handbook of Nonlinear Regression Models. New York: Marcel Dekker.

  • Schabenberger, O., and Pierce, F. J. (2002). Contemporary Statistical Models for the Plant and Soil Sciences. Boca Raton, FL: CRC Press.

  • Schabenberger, O., Tharp, B. E., Kells, J. J., and Penner, D. (1999). “Statistical Tests for Hormesis and Effective Dosages in Herbicide Dose Response.” Agronomy Journal 91:713–721.

  • Seber, G. A. F., and Wild, C. J. (1989). Nonlinear Regression. New York: John Wiley & Sons.

  • St. Laurent, R. T., and Cook, R. D. (1992). “Leverages and Superleverages in Nonlinear Regression.” Journal of the American Statistical Association 87:985–990.

  • St. Laurent, R. T., and Cook, R. D. (1993). “Leverages, Local Influence, and Curvature in Nonlinear Regression.” Biometrika 80:99–106.

  • Wu, C. F. J. (1986). “Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis.” Annals of Statistics 80:1261–1295.