Bard, Y. (1970). “Comparison of Gradient Methods for the Solution of the Nonlinear Parameter Estimation Problem.” SIAM Journal on Numerical Analysis 7:157–186.
Bard, Y. (1974). Nonlinear Parameter Estimation. New York: Academic Press.
Bates, D. M., and Watts, D. G. (1980). “Relative Curvature Measures of Nonlinearity (with Discussion).” Journal of the Royal Statistical Society, Series B 42:1–25.
Bates, D. M., and Watts, D. G. (1981). “A Relative Offset Orthogonality Convergence Criterion for Nonlinear Least Squares.” Technometrics 23:179–183.
Bates, D. M., and Watts, D. G. (1988). Nonlinear Regression Analysis and Its Applications. New York: John Wiley & Sons.
Beaton, A. E., and Tukey, J. W. (1974). “The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data.” Technometrics 16:147–185.
Box, M. J. (1971). “Bias in Nonlinear Estimation (with Discussion).” Journal of the Royal Statistical Society, Series B 33:171–201.
Charnes, A., Frome, E. L., and Yu, P. L. (1976). “The Equivalence of Generalized Least Squares and Maximum Likelihood Estimation in the Exponential Family.” Journal of the American Statistical Association 71:169–171.
Clarke, G. P. Y. (1987). “Approximate Confidence Limits for a Parameter Function in Nonlinear Regression.” Journal of the American Statistical Association 82:221–230.
Cook, R. D., and Tsai, C.-L. (1985). “Residuals in Nonlinear Regression.” Biometrika 72:23–29.
Cook, R. D., and Weisberg, S. (1990). “Confidence Curves in Nonlinear Regression.” Journal of the American Statistical Association 85:544–551.
Cox, D. R. (1970). Analysis of Binary Data. London: Metheun.
DiCiccio, T. J., and Efron, B. (1996). “Bootstrap Confidence Intervals.” Statistical Science 11:189–212.
Donaldson, J. R., and Schnabel, R. B. (1987). “Computational Experience with Confidence Regions and Confidence Intervals for Nonlinear Least Squares.” Technometrics 29:67–82.
Finney, D. J. (1971). Probit Analysis. 3rd ed. Cambridge: Cambridge University Press.
Gallant, A. R. (1975). “Nonlinear Regression.” American Statistician 29:73–81.
Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical Optimization. New York: Academic Press.
Goodnight, J. H. (1979). “A Tutorial on the Sweep Operator.” American Statistician 33:149–158.
Hartley, H. O. (1961). “The Modified Gauss-Newton Method for the Fitting of Non-linear Regression Functions by Least Squares.” Technometrics 3:269–280.
Holland, P. W., and Welsch, R. E. (1977). “Robust Regression Using Iteratively Reweighted Least-Squares.” Communications in Statistics—Theory and Methods 6:813–827.
Hougaard, P. (1982). “Parameterizations of Nonlinear Models.” Journal of the Royal Statistical Society, Series B 44:244–252.
Hougaard, P. (1985). “The Appropriateness of the Asymptotic Distribution in a Nonlinear Regression Model in Relation to Curvature.” Journal of the Royal Statistical Society, Series B 47:103–114.
Huber, P. J. (1964). “Robust Estimation of a Location Parameter.” Annals of Mathematical Statistics 35:73–101.
Huber, P. J. (1973). “Robust Regression: Asymptotics, Conjectures, and Monte Carlo.” Annals of Statistics 1:799–821.
Jennrich, R. I. (1969). “Asymptotic Properties of Nonlinear Least Squares Estimators.” Annals of Mathematical Statistics 40:633–643.
Jennrich, R. I., and Moore, R. H. (1975). “Maximum Likelihood Estimation by Means of Nonlinear Least Squares.” American Statistical Association, 1975 Proceedings of the Statistical Computing Section 57–65.
Jennrich, R. I., and Sampson, P. F. (1968). “Application of Stepwise Regression to Nonlinear Estimation.” Technometrics 10:63–72.
Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.
Kennedy, W. J., Jr., and Gentle, J. E. (1980). Statistical Computing. New York: Marcel Dekker.
Lee, E. T. (1974). “A Computer Program for Linear Logistic Regression Analysis.” Computer Programs in Biomedicine 4:80–92.
MacKinnon, J. G. (2002). “Bootstrap Inference in Econometrics.” Canadian Journal of Economics 35:615–645.
Marquardt, D. W. (1963). “An Algorithm for Least-Squares Estimation of Nonlinear Parameters.” Journal of the Society for Industrial and Applied Mathematics 11:431–441.
McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. London: Chapman & Hall.
Nelder, J. A., and Wedderburn, R. W. M. (1972). “Generalized Linear Models.” Journal of the Royal Statistical Society, Series A 135:370–384.
Pinheiro, J. C., and Bates, D. M. (1995). “Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model.” Journal of Computational and Graphical Statistics 4:12–35.
Pringle, R. M., and Rayner, A. A. (1971). Generalized Inverse Matrices with Applications to Statistics. New York: Hafner Publishing.
Ratkowsky, D. (1983). Nonlinear Regression Modeling. New York: Marcel Dekker.
Ratkowsky, D. (1990). Handbook of Nonlinear Regression Models. New York: Marcel Dekker.
Schabenberger, O., and Pierce, F. J. (2002). Contemporary Statistical Models for the Plant and Soil Sciences. Boca Raton, FL: CRC Press.
Schabenberger, O., Tharp, B. E., Kells, J. J., and Penner, D. (1999). “Statistical Tests for Hormesis and Effective Dosages in Herbicide Dose Response.” Agronomy Journal 91:713–721.
Seber, G. A. F., and Wild, C. J. (1989). Nonlinear Regression. New York: John Wiley & Sons.
St. Laurent, R. T., and Cook, R. D. (1992). “Leverages and Superleverages in Nonlinear Regression.” Journal of the American Statistical Association 87:985–990.
St. Laurent, R. T., and Cook, R. D. (1993). “Leverages, Local Influence, and Curvature in Nonlinear Regression.” Biometrika 80:99–106.
Wu, C. F. J. (1986). “Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis.” Annals of Statistics 80:1261–1295.