Example 63.3 Probit-Normal Model with Ordinal Data

The data for this example are from Ezzet and Whitehead (1991), who describe a crossover experiment on two groups of patients using two different inhaler devices (A and B). Patients from group 1 used device A for one week and then device B for another week. Patients from group 2 used the devices in reverse order. The data entered as a SAS data set are as follows:

data inhaler;
   input clarity group time freq @@;
   gt = group*time;
   sub = floor((_n_+1)/2);
   datalines;
1 0 0 59   1 0 1 59   1 0 0 35   2 0 1 35   1 0 0  3   3 0 1  3   1 0 0  2
4 0 1  2   2 0 0 11   1 0 1 11   2 0 0 27   2 0 1 27   2 0 0  2   3 0 1  2
2 0 0  1   4 0 1  1   4 0 0  1   1 0 1  1   4 0 0  1   2 0 1  1   1 1 0 63
1 1 1 63   1 1 0 13   2 1 1 13   2 1 0 40   1 1 1 40   2 1 0 15   2 1 1 15
3 1 0  7   1 1 1  7   3 1 0  2   2 1 1  2   3 1 0  1   3 1 1  1   4 1 0  2
1 1 1  2   4 1 0  1   3 1 1  1
;

The response measurement, clarity, is the patients’ assessment on the clarity of the leaflet instructions for the devices. The clarity variable is on an ordinal scale, with 1=easy, 2=only clear after rereading, 3=not very clear, and 4=confusing. The group variable indicates the treatment group, and the time variable indicates the time of measurement. The freq variable indicates the number of patients with exactly the same responses. A variable gt is created to indicate a group-by-time interaction, and a variable sub is created to indicate patients.

As in the previous example and in Hedeker and Gibbons (1994), assume an underlying latent continuous variable, here with the form

     

where indexes patient and indexes the time period, indicates groups, indicates time, is a patient-level normal random effect, and are iid normal errors. The s are unknown coefficients to be estimated.

Instead of observing , however, you observe only whether it falls in one of the four intervals: , , , or , where and are both positive. The resulting category is the value assigned to the clarity variable.

The following code sets up and fits this ordinal probit model:

proc nlmixed data=inhaler corr ecorr;
   parms b0=0 b1=0 b2=0 b3=0 sd=1 i1=1 i2=1;
   bounds i1 > 0, i2 > 0;
   eta = b0 + b1*group + b2*time + b3*gt + u;
   if (clarity=1) then p = probnorm(-eta);
   else if (clarity=2) then
      p = probnorm(i1-eta) - probnorm(-eta);
   else if (clarity=3) then
      p = probnorm(i1+i2-eta) - probnorm(i1-eta);
   else p = 1 - probnorm(i1+i2-eta);
   if (p > 1e-8) then ll = log(p);
   else ll = -1e20;
   model clarity ~ general(ll);
   random u ~ normal(0,sd*sd) subject=sub;
   replicate freq;
   estimate 'thresh2' i1;
   estimate 'thresh3' i1 + i2;
   estimate 'icc' sd*sd/(1+sd*sd);
run;

The PROC NLMIXED statement specifies the input data set and requests correlations both for the parameter estimates (CORR option) and for the additional estimates specified with ESTIMATE statements (ECORR option).

The parameters as defined in the PARMS statement are as follows: b0 (overall intercept), b1 (group main effect), B2 (time main effect), b3 (group-by-time interaction), sd (standard deviation of the random effect), i1 (increment between first and second thresholds), and i2 (increment between second and third thresholds). The BOUNDS statement restricts i1 and i2 to be positive.

The SAS programming statements begin by defining the linear predictor eta, which is a linear combination of the b parameters and a single random effect u. The next statements define the ordinal likelihood according to the clarity variable, eta, and the increment variables. An error trap is included in case the likelihood becomes too small.

A general log-likelihood specification is used in the MODEL statement, and the RANDOM statement defines the random effect u to have standard deviation sd and subject variable sub. The REPLICATE statement indicates that data for each subject should be replicated according to the freq variable.

The ESTIMATE statements specify the second and third thresholds in terms of the increment variables (the first threshold is assumed to equal zero for model identifiability). Also computed is the intraclass correlation.

The output is as follows.

Output 63.3.1 Specifications for Ordinal Data Model
The NLMIXED Procedure

Specifications
Data Set WORK.INHALER
Dependent Variable clarity
Distribution for Dependent Variable General
Random Effects u
Distribution for Random Effects Normal
Subject Variable sub
Replicate Variable freq
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian Quadrature

The "Specifications" table echoes some primary information specified for this nonlinear mixed model (Output 63.3.1). Because the log-likelihood function was expressed with SAS programming statements, the distribution is displayed as General in the "Specifications" table.

The "Dimensions" table reveals a total of 286 subjects, which is the sum of the values of the FREQ variable for the second time point. Five quadrature points are selected for log-likelihood evaluation (Output 63.3.2).

Output 63.3.2 Dimensions Table for Ordinal Data Model
Dimensions
Observations Used 38
Observations Not Used 0
Total Observations 38
Subjects 286
Max Obs Per Subject 2
Parameters 7
Quadrature Points 5

Output 63.3.3 Parameter Starting Values and Negative Log Likelihood
Parameters
b0 b1 b2 b3 sd i1 i2 NegLogLike
0 0 0 0 1 1 1 538.484276

The "Parameters" table lists the simple starting values for this problem (Output 63.3.3). The "Iteration History" table indicates successful convergence in 13 iterations (Output 63.3.4).

Output 63.3.4 Iteration History
Iteration History
Iter   Calls NegLogLike Diff MaxGrad Slope
1   2 476.382511 62.10176 43.75062 -1431.4
2   4 463.228197 13.15431 14.24648 -106.753
3   5 458.528118 4.70008 48.31316 -33.0389
4   6 450.975735 7.552383 22.60098 -40.9954
5   8 448.012701 2.963033 14.86877 -16.7453
6   10 447.245153 0.767549 7.774189 -2.26743
7   11 446.72767 0.517483 3.793533 -1.59278
8   13 446.518273 0.209396 0.868638 -0.37801
9   16 446.514528 0.003745 0.328568 -0.02356
10   18 446.513341 0.001187 0.056778 -0.00183
11   20 446.513314 0.000027 0.010785 -0.00004
12   22 446.51331 3.956E-6 0.004922 -5.41E-6
13   24 446.51331 1.989E-7 0.00047 -4E-7

NOTE: GCONV convergence criterion satisfied.

Output 63.3.5 Fit Statistics for Ordinal Data Model
Fit Statistics
-2 Log Likelihood 893.0
AIC (smaller is better) 907.0
AICC (smaller is better) 910.8
BIC (smaller is better) 932.6

The "Fit Statistics" table lists the log likelihood and information criteria for model comparisons (Output 63.3.5).

Output 63.3.6 Parameter Estimates at Convergence
Parameter Estimates
Parameter Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper Gradient
b0 -0.6364 0.1342 285 -4.74 <.0001 0.05 -0.9006 -0.3722 0.00047
b1 0.6007 0.1770 285 3.39 0.0008 0.05 0.2523 0.9491 0.000265
b2 0.6015 0.1582 285 3.80 0.0002 0.05 0.2900 0.9129 0.00008
b3 -1.4817 0.2385 285 -6.21 <.0001 0.05 -1.9512 -1.0122 0.000102
sd 0.6599 0.1312 285 5.03 <.0001 0.05 0.4017 0.9181 -0.00009
i1 1.7450 0.1474 285 11.84 <.0001 0.05 1.4548 2.0352 0.000202
i2 0.5985 0.1427 285 4.19 <.0001 0.05 0.3177 0.8794 0.000087

The "Parameter Estimates" table indicates significance of all the parameters (Output 63.3.6).

Output 63.3.7 Threshold and Intraclass Correlation Estimates
Additional Estimates
Label Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper
thresh2 1.7450 0.1474 285 11.84 <.0001 0.05 1.4548 2.0352
thresh3 2.3435 0.2073 285 11.31 <.0001 0.05 1.9355 2.7515
icc 0.3034 0.08402 285 3.61 0.0004 0.05 0.1380 0.4687

The "Additional Estimates" table displays results from the ESTIMATE statements (Output 63.3.7).