Akaike, H. (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control AC-19:716–723.
Bozdogan, H. (1987). “Model Selection and Akaike’s Information Criterion (AIC): The General Theory and Its Analytical Extensions.” Psychometrika 52:345–370.
Brown, H., and Prescott, R. (1999). Applied Mixed Models in Medicine. New York: John Wiley & Sons.
Burnham, K. P., and Anderson, D. R. (1998). Model Selection and Inference: A Practical Information-Theoretic Approach. New York: Springer-Verlag.
Churchill, G. A. (2002). “Fundamentals of Experimental Design for cDNA Microarray.” Nature Genetics 32:490–495.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). “Maximum Likelihood from Incomplete Data via the EM Algorithm.” Journal of the Royal Statistical Society, Series B 39:1–38.
George, J. A., and Liu, J. W. (1981). Computer Solutions of Large Sparse Positive Definite Systems. Englewood Cliffs, NJ: Prentice-Hall.
Gibson, G., and Wolfinger, R. D. (2004). “Gene Expression Profiling Using Mixed Models.” In Genetic Analysis of Complex Traits Using SAS, edited by A. M. Saxton, 251–278. Cary, NC: SAS Institute Inc.
Gilmour, A. R., Thompson, R., and Cullis, B. R. (1995). “Average Information REML: An Efficient Algorithm for Variance Parameter Estimation in Linear Mixed Models.” Biometrics 51:1440–1450.
Hannan, E. J., and Quinn, B. G. (1979). “The Determination of the Order of an Autoregression.” Journal of the Royal Statistical Society, Series B 41:190–195.
Henderson, C. R. (1990). “Statistical Method in Animal Improvement: Historical Overview.” In Advances in Statistical Methods for Genetic Improvement of Livestock, 1–14. New York: Springer-Verlag.
Hurvich, C. M., and Tsai, C.-L. (1989). “Regression and Time Series Model Selection in Small Samples.” Biometrika 76:297–307.
Johnson, D. L., and Thompson, R. (1995). “Restricted Maximum Likelihood Estimation of Variance Components for Univariate Animal Models Using Sparse Matrix Techniques and Average Information.” Journal of Dairy Science 78:449–456.
Kerr, M. K., Martin, M., and Churchill, G. A. (2000). “Analysis of Variance for Gene Expression Microarray Data.” Journal of Computational Biology 7:819–837.
Littell, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. (1996). SAS System for Mixed Models. Cary, NC: SAS Institute Inc.
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. (2006). SAS for Mixed Models. 2nd ed. Cary, NC: SAS Institute Inc.
McLean, R. A., Sanders, W. L., and Stroup, W. W. (1991). “A Unified Approach to Mixed Linear Models.” American Statistician 45:54–64.
Ott, E. R. (1967). “Analysis of Means: A Graphical Procedure.” Industrial Quality Control 24:101–109. Reprinted in Journal of Quality Technology 15 (1983): 10–18.
Pothoff, R. F., and Roy, S. N. (1964). “A Generalized Multivariate Analysis of Variance Model Useful Especially for Growth Curve Problems.” Biometrika 51:313–326.
Schabenberger, O., Gregoire, T. G., and Kong, F. (2000). “Collections of Simple Effects and Their Relationship to Main Effects and Interactions in Factorials.” American Statistician 54:210–214.
Schwarz, G. (1978). “Estimating the Dimension of a Model.” Annals of Statistics 6:461–464.
Searle, S. R., Casella, G., and McCulloch, C. E. (1992). Variance Components. New York: John Wiley & Sons.
Shewchuk, J. R. (1994). An Introduction to the Conjugate Gradient Method without the Agonizing Pain. Technical report, Carnegie Mellon University.
Tsuruta, S., Misztal, I., and Stranden, I. (2001). “Use of the Preconditioned Conjugate Gradient Algorithm as a Generic Solver for Mixed-Model Equations in Animal Breeding Apllications.” Journal of Animal Science 79:1166–1172.
Verbeke, G., and Molenberghs, G., eds. (1997). Linear Mixed Models in Practice: A SAS-Oriented Approach. New York: Springer.
Verbeke, G., and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer.
Winer, B. J. (1971). Statistical Principles in Experimental Design. 2nd ed. New York: McGraw-Hill.
Wolfinger, R. D., Gibson, G., Wolfinger, E., Bennett, L., Hamadeh, H., Bushel, P., Afshari, C., and Paules, R. S. (2001). “Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models.” Journal of Computational Biology 8:625–637.