The ROBUSTREG Procedure

References

  • Akaike, H. (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control AC-19:716–723.

  • Brownlee, K. A. (1965). Statistical Theory and Methodology in Science and Engineering. New York: John Wiley & Sons.

  • Chen, C. (2002). “Robust Regression and Outlier Detection with the ROBUSTREG Procedure.” In Proceedings of the Twenty-Seventh Annual SAS Users Group International Conference. Cary, NC: SAS Institute Inc. http://www2.sas.com/proceedings/sugi27/p265-27.pdf.

  • Chen, C., and Yin, G. (2002). “Computing the Efficiency and Tuning Constants for M-Estimation.” In Proceedings of the 2002 Joint Statistical Meetings, 478–482. Alexandria, VA: American Statistical Association.

  • Coleman, D. E., Holland, P. W., Kaden, N., Klema, V., and Peters, S. C. (1980). “A System of Subroutines for Iteratively Reweighted Least Squares Computations.” ACM Transactions on Mathematical Software 6:327–336.

  • Data and Story Library (2005). “Home Prices.” Carnegie Mellon University, Department of Statistics. Accessed July 22, 2011. http://lib.stat.cmu.edu/DASL/Datafiles/homedat.html.

  • De Long, J. B., and Summers, L. H. (1991). “Equipment Investment and Economic Growth.” Quarterly Journal of Economics 106:445–501.

  • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. New York: John Wiley & Sons.

  • Hawkins, D. M., Bradu, D., and Kass, G. V. (1984). “Location of Several Outliers in Multiple Regression Data Using Elemental Sets.” Technometrics 26:197–208.

  • Holland, P. W., and Welsch, R. E. (1977). “Robust Regression Using Iteratively Reweighted Least-Squares.” Communications in Statistics—Theory and Methods 6:813–827.

  • Huber, P. J. (1973). “Robust Regression: Asymptotics, Conjectures, and Monte Carlo.” Annals of Statistics 1:799–821.

  • Huber, P. J. (1981). Robust Statistics. New York: John Wiley & Sons.

  • Marazzi, A. (1993). Algorithm, Routines, and S Functions for Robust Statistics. Pacific Grove, CA: Wadsworth & Brooks/Cole.

  • Ronchetti, E. M. (1985). “Robust Model Selection in Regression.” Statistics and Probability Letters 3:21–23.

  • Rousseeuw, P. J. (1984). “Least Median of Squares Regression.” Journal of the American Statistical Association 79:871–880.

  • Rousseeuw, P. J., and Hubert, M. (1996). “Recent Development in PROGRESS.” Computational Statistics and Data Analysis 21:67–85.

  • Rousseeuw, P. J., and Leroy, A. M. (1987). Robust Regression and Outlier Detection. New York: John Wiley & Sons.

  • Rousseeuw, P. J., and Van Driessen, K. (1999). “A Fast Algorithm for the Minimum Covariance Determinant Estimator.” Technometrics 41:212–223.

  • Rousseeuw, P. J., and Van Driessen, K. (2000). “An Algorithm for Positive-Breakdown Regression Based on Concentration Steps.” In Data Analysis: Scientific Modeling and Practical Application, edited by W. Gaul, O. Opitz, and M. Schader, 335–346. New York: Springer-Verlag.

  • Rousseeuw, P. J., and Yohai, V. (1984). “Robust Regression by Means of S-Estimators.” In Robust and Nonlinear Time Series Analysis, edited by J. Franke, W. Härdle, and R. D. Martin, 256–274. Vol. 26 of Lecture Notes in Statistics. Berlin: Springer-Verlag.

  • Ruppert, D. (1992). “Computing S Estimators for Regression and Multivariate Location/Dispersion.” Journal of Computational and Graphical Statistics 1:253–270.

  • Yohai, V. J. (1987). “High Breakdown Point and High Efficiency Robust Estimates for Regression.” Annals of Statistics 15:642–656.

  • Yohai, V. J., Stahel, W. A., and Zamar, R. H. (1991). “A Procedure for Robust Estimation and Inference in Linear Regression.” In Directions in Robust Statistics and Diagnostics, Part 2, edited by W. A. Stahel, and S. W. Weisberg, 365–374. New York: Springer-Verlag.

  • Yohai, V. J., and Zamar, R. H. (1997). “Optimal Locally Robust M-Estimates of Regression.” Journal of Statistical Planning and Inference 64:309–323.

  • Zaman, A., Rousseeuw, P. J., and Orhan, M. (2001). “Econometric Applications of High-Breakdown Robust Regression Techniques.” Econometrics Letters 71:1–8.