This example uses pseudo-random samples from a uniform distribution, an exponential distribution, and a bimodal mixture of two normal distributions. Results are presented in Output 59.1.1 through Output 59.1.18 as plots displaying both the true density and the estimated density, as well as cluster membership.
The following statements produce Output 59.1.1 through Output 59.1.4:
title 'Modeclus Example with Univariate Distributions'; title2 'Uniform Distribution'; data uniform; drop n; true=1; do n=1 to 100; x=ranuni(123); output; end; run;
proc modeclus data=uniform m=1 k=10 20 40 60 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 2 by 1.); yaxis values=(0 to 3 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _K_; run;
proc modeclus data=uniform m=1 r=.05 .10 .20 .30 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 2 by 1.); yaxis values=(0 to 2 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _R_; run;
Modeclus Example with Univariate Distributions |
Uniform Distribution |
Cluster Summary | ||
---|---|---|
K | Number of Clusters |
Frequency of Unclassified Objects |
10 | 6 | 0 |
20 | 3 | 0 |
40 | 2 | 0 |
60 | 1 | 0 |
Modeclus Example with Univariate Distributions |
Uniform Distribution |
Cluster Summary | ||
---|---|---|
R | Number of Clusters |
Frequency of Unclassified Objects |
0.05 | 4 | 0 |
0.1 | 2 | 0 |
0.2 | 2 | 0 |
0.3 | 1 | 0 |
The following statements produce Output 59.1.5 through Output 59.1.12:
data expon; title2 'Exponential Distribution'; drop n; do n=1 to 100; x=ranexp(123); true=exp(-x); output; end; run;
proc modeclus data=expon m=1 k=10 20 40 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1 by .5); yaxis values=(0 to 2 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _K_; run;
proc modeclus data=expon m=1 r=.20 .40 .80 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1 by .5); yaxis values=(0 to 1 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _R_; run;
title3 'Different Density-Estimation and Clustering Windows'; proc modeclus data=expon m=1 r=.20 ck=10 20 40 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1 by .5); yaxis values=(0 to 1 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _CK_; run;
title3 'Cascaded Density Estimates Using Arithmetic Means'; proc modeclus data=expon m=1 r=.20 cascade=1 2 4 am out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1 by .5); yaxis values=(0 to 1 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _R_ _CASCAD_; run;
Modeclus Example with Univariate Distributions |
Exponential Distribution |
Cluster Summary | ||
---|---|---|
K | Number of Clusters |
Frequency of Unclassified Objects |
10 | 5 | 0 |
20 | 3 | 0 |
40 | 1 | 0 |
Modeclus Example with Univariate Distributions |
Exponential Distribution |
Cluster Summary | ||
---|---|---|
R | Number of Clusters |
Frequency of Unclassified Objects |
0.2 | 8 | 0 |
0.4 | 6 | 0 |
0.8 | 1 | 0 |
Modeclus Example with Univariate Distributions |
Exponential Distribution |
Different Density-Estimation and Clustering Windows |
Cluster Summary | |||
---|---|---|---|
R | CK | Number of Clusters |
Frequency of Unclassified Objects |
0.2 | 10 | 3 | 0 |
0.2 | 20 | 2 | 0 |
0.2 | 40 | 1 | 0 |
Modeclus Example with Univariate Distributions |
Exponential Distribution |
Cascaded Density Estimates Using Arithmetic Means |
Cluster Summary | |||
---|---|---|---|
R | Cascade | Number of Clusters |
Frequency of Unclassified Objects |
0.2 | 1 | 8 | 0 |
0.2 | 2 | 8 | 0 |
0.2 | 4 | 7 | 0 |
The following statements produce Output 59.1.13 through Output 59.1.18:
title2 'Normal Mixture Distribution'; data normix; drop n sigma; sigma=.125; do n=1 to 100; x=rannor(456)*sigma+mod(n,2)/2; true=exp(-.5*(x/sigma)**2)+exp(-.5*((x-.5)/sigma)**2); true=.5*true/(sigma*sqrt(2*3.1415926536)); output; end; run;
proc modeclus data=normix m=1 k=10 20 40 60 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1.6 by .1); yaxis values=(0 to 3 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _K_; run;
proc modeclus data=normix m=1 r=.05 .10 .20 .30 out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1.6 by .1); yaxis values=(0 to 3 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _R_; run;
title3 'Cascaded Density Estimates Using Arithmetic Means'; proc modeclus data=normix m=1 r=.05 cascade=1 2 4 am out=out short; var x; run; proc sgplot data=out noautolegend; y2axis label='True' values=(0 to 1.6 by .1); yaxis values=(0 to 2 by 0.5); scatter y=density x=x / markerchar=cluster group=cluster; pbspline y=true x=x / y2axis nomarkers lineattrs=(thickness= 1); by _R_ _CASCAD_; run;
Modeclus Example with Univariate Distributions |
Normal Mixture Distribution |
Cluster Summary | ||
---|---|---|
K | Number of Clusters |
Frequency of Unclassified Objects |
10 | 7 | 0 |
20 | 2 | 0 |
40 | 2 | 0 |
60 | 1 | 0 |
Modeclus Example with Univariate Distributions |
Normal Mixture Distribution |
Cluster Summary | ||
---|---|---|
R | Number of Clusters |
Frequency of Unclassified Objects |
0.05 | 5 | 0 |
0.1 | 2 | 0 |
0.2 | 2 | 0 |
0.3 | 1 | 0 |
Modeclus Example with Univariate Distributions |
Normal Mixture Distribution |
Cascaded Density Estimates Using Arithmetic Means |
Cluster Summary | |||
---|---|---|---|
R | Cascade | Number of Clusters |
Frequency of Unclassified Objects |
0.05 | 1 | 5 | 0 |
0.05 | 2 | 4 | 0 |
0.05 | 4 | 4 | 0 |