The CLP Procedure

References

  • Applegate, D. L., and Cook, W. (1991). “A Computational Study of the Job Shop Scheduling Problem.” ORSA Journal on Computing 3:149–156.

  • Baptiste, P., and Le Pape, C. (1996). “Edge-Finding Constraint Propagation Algorithms for Disjunctive and Cumulative Scheduling.” In Proceedings of the Fifteenth Workshop of the UK Planning Special Interest Group (PLANSIG). Liverpool.

  • Bartusch, M. (1983). Optimierung von Netzplänen mit Anordnungsbeziehungen bei knappen Betriebsmitteln. Ph.D. thesis, Universität Passau, Fakultät für Mathematik und Informatik.

  • Boussemart, F., Hemery, F., Lecoutre, C., and Sais, L. (2004). “Boosting Systematic Search by Weighting Constraints.” In ECAI 2004: Proceedings of the Sixteenth European Conference on Artificial Intelligence, 146–150. Amsterdam: IOS Press.

  • Brualdi, R. A. (2010). Introductory Combinatorics. 5th ed. Englewood Cliffs, NJ: Prentice-Hall.

  • Carlier, J., and Pinson, E. (1989). “An Algorithm for Solving the Job-Shop Scheduling Problem.” Management Science 35:164–176.

  • Carlier, J., and Pinson, E. (1990). “A Practical Use of Jackson’s Preemptive Schedule for Solving the Job-Shop Problem.” Annals of Operations Research 26:269–287.

  • Colmerauer, A. (1990). “An Introduction to PROLOG III.” Communications of the ACM 33:70–90.

  • Dincbas, M., Simonis, H., and Van Hentenryck, P. (1988). “Solving the Car-Sequencing Problem in Constraint Logic Programming.” In Proceedings of the European Conference on Artificial Intelligence, ECAI-88, edited by Y. Kodratoff, 290–295. London: Pitman.

  • Floyd, R. W. (1967). “Nondeterministic Algorithms.” Journal of the ACM 14:636–644.

  • Frisch, A. M., Hnich, B., Kiziltan, Z., Miguel, I., and Walsh, T. (2002). “Global Constraints for Lexicographic Orderings.” In Proceedings of the Eighth International Conference on Principles and Practice of Constraint Programming (CP 2002), edited by P. Van Hentenryck, 93–108. London: Springer-Verlag.

  • Garey, M. R., and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H. Freeman.

  • Gravel, M., Gagne, C., and Price, W. L. (2005). “Review and Comparison of Three Methods for the Solution of the Car Sequencing Problem.” Journal of the Operational Research Society 56:1287–1295.

  • Haralick, R. M., and Elliott, G. L. (1980). “Increasing Tree Search Efficiency for Constraint Satisfaction Problems.” Artificial Intelligence 14:263–313.

  • Henz, M. (2001). “Scheduling a Major College Basketball Conference—Revisited.” Operations Research 49:163–168.

  • Jaffar, J., and Lassez, J. (1987). “Constraint Logic Programming.” In Proceedings of the Fourteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 111–119. New York: Association for Computing Machinery.

  • Kumar, V. (1992). “Algorithms for Constraint-Satisfaction Problems: A Survey.” AI Magazine 13:32–44.

  • Lawrence, S. (1984). Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques (Supplement). Technical report, Graduate School of Industrial Administration, Carnegie Mellon University.

  • Mackworth, A. K. (1977). “Consistency in Networks of Relations.” Artificial Intelligence 8:99–118.

  • Meseguer, P., and Torras, C. (2001). “Exploiting Symmetries within Constraint Satisfaction Search.” Artificial Intelligence 129:133–163.

  • Muth, J. F., and Thompson, G. L., eds. (1963). Industrial Scheduling. Englewood Cliffs, NJ: Prentice-Hall.

  • Nemhauser, G. L., and Trick, M. A. (1998). “Scheduling a Major College Basketball Conference.” Operations Research 46:1–8.

  • Nemhauser, G. L., and Wolsey, L. A. (1988). Integer and Combinatorial Optimization. New York: John Wiley & Sons.

  • Nuijten, W. (1994). Time and Resource Constrained Scheduling. Ph.D. diss., Eindhoven Institute of Technology, Netherlands.

  • Prestwich, S. D. (2001). “Balanced Incomplete Block Design as Satisfiability.” In Twelfth Irish Conference on Artificial Intelligence and Cognitive Science, 189–198. Maynooth: National University of Ireland.

  • Riley, P., and Taalman, L. (2008). “Brainfreeze Puzzles.” http://www.geekhaus.com/brainfreeze/piday2008.html.

  • Smith, B. M., Brailsford, S. C., Hubbard, P. M., and Williams, H. P. (1996). “The Progressive Party Problem: Integer Linear Programming and Constraint Programming Compared.” Constraints 1:119–138.

  • Sokol, J. (2002). Modeling Automobile Paint Blocking: A Time Window Traveling Salesman Problem. Ph.D. diss., Massachusetts Institute of Technology.

  • Solnon, C., Cung, V. D., Nguyen, A., and Artigues, C. (2008). “The Car Sequencing Problem: Overview of State-of-the-Art Methods and Industrial Case-Study of the ROADEF 2005 Challenge Problem.” European Journal of Operational Research 191:912–927.

  • Trick, M. A. (2004). “Constraint Programming: A Tutorial.” http://mat.gsia.cmu.edu/trick/cp.ppt.

  • Tsang, E. (1993). Foundations of Constraint Satisfaction. London: Academic Press.

  • Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. Cambridge, MA: MIT Press.

  • Van Hentenryck, P. (2002). “Constraint and Integer Programming in OPL.” INFORMS Journal on Computing 14:345–372.

  • Van Hentenryck, P., Deville, Y., and Teng, C. (1992). “A Generic Arc-Consistency Algorithm and Its Specializations.” Artificial Intelligence 57:291–321.

  • Waltz, D. L. (1975). “Understanding Line Drawings of Scenes with Shadows.” In The Psychology of Computer Vision, edited by P. H. Winston, 19–91. New York: McGraw-Hill.

  • Williams, H. P., and Wilson, J. M. (1998). “Connections between Integer Linear Programming and Constraint Logic Programming: An Overview and Introduction to the Cluster of Articles.” INFORMS Journal on Computing 10:261–264.