The CLP Procedure

References

  • Applegate, D. and Cook, W. (1991), “A Computational Study of the Job Shop Scheduling Problem,” ORSA Journal on Computing, 3, 149–156.

  • Baptiste, P. and Le Pape, C. (1996), “Edge-Finding Constraint Propagation Algorithms for Disjunctive and Cumulative Scheduling,” in Proceedings of the 15th Workshop of the UK Planning Special Interest Group, Liverpool, UK.

  • Bartusch, M. (1983), Optimierung von Netzplänen mit Anordnungsbeziehungen bei knappen Betriebsmitteln, Ph.D. thesis, Universität Passau, Fakultät für Mathematik und Informatik.

  • Brualdi, R. A. (2010), Introductory Combinatorics, Prentice Hall.

  • Carlier, J. and Pinson, E. (1989), “An Algorithm for Solving the Job-Shop Scheduling Problem,” Management Science, 35(2), 164–176.

  • Carlier, J. and Pinson, E. (1990), “A Practical Use of Jackson’s Preemptive Schedule for Solving the Job-Shop Problem,” Annals of Operations Research, 26, 269–287.

  • Colmerauer, A. (1990), “An Introduction to PROLOG III,” Communications of the ACM, 33(7), 70–90.

  • Dincbas, M., Simonis, H., and Van Hentenryck, P. (1988), “Solving the Car-Sequencing Problem in Constraint Logic Programming,” in Y. Kodratoff, ed., Proceedings of ECAI-88, 290–295, Munich, W. Germany.

  • Floyd, R. W. (1967), “Nondeterministic Algorithms,” Journal of the ACM, 14(4), 636–644.

  • Frisch, A. M., Hnich, B., Kiziltan, Z., Miguel, I., and Walsh, T. (2002), “Global Constraints for Lexicographic Orderings,” in P. Van Hentenryck, ed., Proceedings of the Eighth International Conference on Principles and Practice of Constraint Programming (CP 2002), volume LNCS 2470, 93–2008, Springer.

  • Garey, M. R. and Johnson, D. S. (1979), Computers and Intractability: A Guide to the Theory of NP-Completeness, New York: W. H. Freeman & Co.

  • Gravel, M., Gagne, C., and Price, W. L. (2005), “Review and Comparison of Three Methods for the Solution of the Car Sequencing Problem,” Journal of the Operational Research Society, 56, 1287–1295.

  • Haralick, R. M. and Elliot, G. L. (1980), “Increasing Tree Search Efficiency for Constraint Satisfaction Problems,” Artificial Intelligence, 14(3), 263–313.

  • Henz, M. (2001), “Scheduling a Major College Basketball Conference—Revisited,” Operations Research, 49, 163–168.

  • Jaffar, J. and Lassez, J. (1987), “Constraint Logic Programming,” in Proceedings of the 14th Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 111–119, Munich, W. Germany.

  • Kumar, V. (1992), “Algorithms for Constraint-Satisfaction Problems: A Survey,” AI Magazine, 13, 32–44.

  • Lawrence, S. (1984), Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques (Supplement), Technical report, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA.

  • Mackworth, A. K. (1977), “Consistency in Networks of Relations,” Artificial Intelligence, 8, 99–118.

  • Meseguer, P. and Torras, C. (2001), “Exploiting Symmetries within Constraint Satisfaction Search,” Artificial Intelligence, 129(1–2), 133–163.

  • Muth, J. F. and Thompson, G. L., eds. (1963), Industrial Scheduling, Englewood Cliffs, NJ: Prentice Hall.

  • Nemhauser, G. L. and Trick, M. A. (1998), “Scheduling a Major College Basketball Conference,” Operations Research, 46, 1–8.

  • Nemhauser, G. L. and Wolsey, L. A. (1988), Integer and Combinatorial Optimization, New York: John Wiley & Sons.

  • Nuijten, W. (1994), Time and Resource Constrained Scheduling, Ph.D. thesis, Eindhoven Institute of Technology, Eindhoven, Netherlands.

  • Prestwich, S. D. (2001), “Balanced Incomplete Block Design as Satisfiability,” in Twelfth Irish Conference on Artificial Intelligence and Cognitive Science.

  • Riley, P. and Taalman, L. (2008), “Brainfreeze Puzzles,” http://www.brainfreezepuzzles.com/main/piday2008.html.

  • Smith, B., Brailsford, S. C., Hubbard, P. M., and Williams, H. P. (1995), “The Progressive Party Problem: Integer Linear Programming and Constraint Programming Compared,” Constraints, 1(1), 119–138.

  • Sokol, J. (2002), Modeling Automobile Paint Blocking: A Time Window Traveling Salesman Problem, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

  • Solnon, C., Cung, V. D., Nguyen, A., and Artigues, C. (2008), “The Car Sequencing Problem: Overview of State-of-the-Art Methods and Industrial Case-Study of the ROADEF 2005 Challenge Problem,” European Journal of Operational Research, 191(3), 912–927.

  • Trick, M. (2004), “Constraint Programming: A Tutorial,” http://mat.gsia.cmu.edu/trick/cp.ppt.

  • Tsang, E. (1993), Foundations of Constraint Satisfaction, London: Academic Press.

  • Van Hentenryck, P. (1989), Constraint Satisfaction in Logic Programming, Cambridge, MA: MIT Press.

  • Van Hentenryck, P. (2002), “Constraint and Integer Programming in OPL,” INFORMS Journal on Computing, 14(4), 345–372.

  • Van Hentenryck, P., Deville, Y., and Teng, C. (1992), “A Generic Arc-Consistency Algorithm and Its Specializations,” Artificial Intelligence, 57(2–3), 291–321.

  • Waltz, D. L. (1975), “Understanding Line Drawings of Scenes with Shadows,” in P. H. Winston, ed., The Psychology of Computer Vision, 19–91, New York: McGraw-Hill.

  • Williams, H. P. and Wilson, J. M. (1998), “Connections between Integer Linear Programming and Constraint Logic Programming—An Overview and Introduction to the Cluster of Articles,” INFORMS Journal of Computing, 10(3), 261–264.