| Language Reference |
nonlinear optimization by quadratic method
lin = { 0. 0. -100};
quad = { 0.02 0.0 ,
0.0 2.0 };
c = { 2. -50. . .,
50. 50. . .,
10. -1. 1. 10.};
x = { -1. -1.};
optn = {0 2};
CALL NLPQUA(rc,xres,quad,x,optn,c,,,,lin);
The quad argument specifies the The iteration history follows.
Optimization Start
Parameter Estimates
Gradient Lower Upper
Objective Bound Bound
N Parameter Estimate Function Constraint Constraint
1 X1 6.800000 0.136000 2.000000 50.000000
2 X2 -1.000000 -2.000000 -50.000000 50.000000
Value of Objective Function = -98.5376
Linear Constraints
1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2
Null Space Method of Quadratic Problem
Parameter Estimates 2
Lower Bounds 2
Upper Bounds 2
Linear Constraints 1
Using Sparse Hessian _
Optimization Start
Active Constraints 0 Objective Function -98.5376
Max Abs Gradient Element 2
Function Active Objective
Iter Restarts Calls Constraints Function
1 0 2 1 -99.87349
2 0 3 1 -99.96000
Objective Max Abs Slope of
Function Gradient Step Search
Iter Change Element Size Direction
1 1.3359 0.5882 0.706 -2.925
2 0.0865 0 1.000 -0.173
Optimization Results
Iterations 2 Function Calls 4
Gradient Calls 3 Active Constraints 1
Objective Function -99.96 Max Abs Gradient Element 0
Slope of Search Direction -0.173010381
ABSGCONV convergence criterion satisfied.
Optimization Results
Parameter Estimates
Gradient Active
Objective Bound
N Parameter Estimate Function Constraint
1 X1 2.000000 0.040000 Lower BC
2 X2 0 0
Value of Objective Function = -99.96
Linear Constraints Evaluated at Solution
1 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2
Copyright © 2009 by SAS Institute Inc., Cary, NC, USA. All rights reserved.