Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions, New York: Dover Publications.
Al-Baali, M. and Fletcher, R. (1985), “Variational Methods for Nonlinear Least Squares,” Journal of the Operations Research Society, 36, 405–421.
Al-Baali, M. and Fletcher, R. (1986), “An Efficient Line Search for Nonlinear Least Squares,” Journal of Optimization Theory and Applications, 48, 359–377.
Bard, Y. (1974), Nonlinear Parameter Estimation, New York: Academic Press.
Beale, E. M. L. (1972), “A Derivation of Conjugate Gradients,” in F. A. Lootsma, ed., Numerical Methods for Nonlinear Optimization, London: Academic Press.
Betts, J. T. (1977), “An Accelerated Multiplier Method for Nonlinear Programming,” Journal of Optimization Theory and Applications, 21, 137–174.
Bracken, J. and McCormick, G. P. (1968), Selected Applications of Nonlinear Programming, New York: John Wiley & Sons.
Chamberlain, R. M., Powell, M. J. D., Lemarechal, C., and Pedersen, H. C. (1982), “The Watchdog Technique for Forcing Convergence in Algorithms for Constrained Optimization,” Mathematical Programming, 16, 1–17.
Cramer, J. S. (1986), Econometric Applications of Maximum Likelihood Methods, Cambridge: Cambridge University Press.
Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981), “An Adaptive Nonlinear Least-Squares Algorithm,” ACM Transactions on Mathematical Software, 7, 348–368.
Dennis, J. E. and Mei, H. H. W. (1979), “Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values,” Journal of Optimization Theory and Applications, 28, 453–482.
Dennis, J. E. and Schnabel, R. B. (1983), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall.
Eskow, E. and Schnabel, R. B. (1991), “Algorithm 695: Software for a New Modified Cholesky Factorization,” ACM Transactions on Mathematical Software, 17, 306–312.
Fletcher, R. (1987), Practical Methods of Optimization, 2nd Edition, Chichester, UK: John Wiley & Sons.
Fletcher, R. and Powell, M. J. D. (1963), “A Rapidly Convergent Descent Method for Minimization,” Computer Journal, 6, 163–168.
Fletcher, R. and Xu, C. (1987), “Hybrid Methods for Nonlinear Least Squares,” Journal of Numerical Analysis, 7, 371–389.
Gallant, A. R. (1987), Nonlinear Statistical Models, New York: John Wiley & Sons.
Gay, D. M. (1983), “Subroutines for Unconstrained Minimization,” ACM Transactions on Mathematical Software, 9, 503–524.
George, J. A. and Liu, J. W. (1981), Computer Solutions of Large Sparse Positive Definite Systems, Englewood Cliffs, NJ: Prentice-Hall.
Gill, E. P., Murray, W., Saunders, M. A., and Wright, M. H. (1983), “Computing Forward-Difference Intervals for Numerical Optimization,” SIAM Journal on Scientific and Statistical Computing, 4, 310–321.
Gill, E. P., Murray, W., Saunders, M. A., and Wright, M. H. (1984), “Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints,” ACM Transactions on Mathematical Software, 10, 282–298.
Gill, P. E., Murray, W., and Wright, M. H. (1981), Practical Optimization, New York: Academic Press.
Goldfeld, S. M., Quandt, R. E., and Trotter, H. F. (1966), “Maximisation by Quadratic Hill-Climbing,” Econometrica, 34, 541–551.
Hambleton, R. K., Swaminathan, H., and Rogers, H. J. (1991), Fundamentals of Item Response Theory, Newbury Park, CA: Sage Publications.
Hartmann, W. M. (1992a), Applications of Nonlinear Optimization with PROC NLP and SAS/IML Software, Technical report, SAS Institute Inc., Cary, NC.
Hartmann, W. M. (1992b), Nonlinear Optimization in IML, Releases 6.08, 6.09, 6.10, Technical report, SAS Institute Inc., Cary, NC.
Haverly, C. A. (1978), “Studies of the Behavior of Recursion for the Pooling Problem,” SIGMAP Bulletin, Association for Computing Machinery, 25, 19–28.
Hock, W. and Schittkowski, K. (1981), Test Examples for Nonlinear Programming Codes, volume 187 of Lecture Notes in Economics and Mathematical Systems, Berlin: Springer-Verlag.
Jennrich, R. I. and Sampson, P. F. (1968), “Application of Stepwise Regression to Nonlinear Estimation,” Technometrics, 10, 63–72.
Lawless, J. F. (1982), Statistical Methods and Methods for Lifetime Data, New York: John Wiley & Sons.
Liebman, J., Lasdon, L., Schrage, L., and Waren, A. (1986), Modeling and Optimization with GINO, Redwood City, CA: Scientific Press.
Lindström, P. and Wedin, P. A. (1984), “A New Line-Search Algorithm for Nonlinear Least-Squares Problems,” Mathematical Programming, 29, 268–296.
Moré, J. J. (1978), “The Levenberg-Marquardt Algorithm: Implementation and Theory,” in G. A. Watson, ed., Lecture Notes in Mathematics, volume 30, 105–116, Berlin: Springer-Verlag.
Moré, J. J., Garbow, B. S., and Hillstrom, K. E. (1981), “Testing Unconstrained Optimization Software,” ACM Transactions on Mathematical Software, 7, 17–41.
Moré, J. J. and Sorensen, D. C. (1983), “Computing a Trust-Region Step,” SIAM Journal on Scientific and Statistical Computing, 4, 553–572.
Moré, J. J. and Wright, S. J. (1993), Optimization Software Guide, Philadelphia: SIAM.
Murtagh, B. A. and Saunders, M. A. (1983), MINOS 5.0 User’s Guide, Technical Report SOL 83-20, Stanford University.
Nelder, J. A. and Mead, R. (1965), “A Simplex Method for Function Minimization,” Computer Journal, 7, 308–313.
Polak, E. (1971), Computational Methods in Optimization, New York: Academic Press.
Powell, M. J. D. (1977), “Restart Procedures for the Conjugate Gradient Method,” Mathematical Programming, 12, 241–254.
Powell, M. J. D. (1978a), “Algorithms for Nonlinear Constraints That Use Lagrangian Functions,” Mathematical Programming, 14, 224–248.
Powell, M. J. D. (1978b), “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations,” in G. A. Watson, ed., Lecture Notes in Mathematics, volume 630, 144–175, Berlin: Springer-Verlag.
Powell, M. J. D. (1982a), “Extensions to Subroutine VF02AD,” in R. F. Drenick and F. Kozin, eds., Systems Modeling and Optimization, Lecture Notes in Control and Information Sciences, volume 38, 529–538, Berlin: Springer-Verlag.
Powell, M. J. D. (1982b), VMCWD: A Fortran Subroutine for Constrained Optimization, Technical Report DAMTP 1982/NA4, Cambridge University.
Powell, M. J. D. (1992), “A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation,” DAMTP/NA5.
Rosenbrock, H. H. (1960), “An Automatic Method for Finding the Greatest or Least Value of a Function,” Computer Journal, 3, 175–184.
Schittkowski, K. (1980), Nonlinear Programming Codes—Information, Tests, Performance, volume 183 of Lecture Notes in Economics and Mathematical Systems, Berlin: Springer-Verlag.
Schittkowski, K. (1987), More Test Examples for Nonlinear Programming Codes, volume 282 of Lecture Notes in Economics and Mathematical Systems, Berlin: Springer-Verlag.
Schittkowski, K. and Stoer, J. (1979), “A Factorization Method for the Solution of Constrained Linear Least Squares Problems Allowing Subsequent Data Changes,” Numerische Mathematik, 31, 431–463.
Stewart, G. W. (1967), “A Modification of Davidon’s Minimization Method to Accept Difference Approximations of Derivatives,” Journal of the Association for Computing Machinery, 14, 72–83.
Wedin, P. A. and Lindström, P. (1987), Methods and Software for Nonlinear Least Squares Problems, Technical Report Report No. UMINF 133.87, University of Umea.
Whitaker, D., Triggs, C. M., and John, J. A. (1990), “Construction of Block Designs Using Mathematical Programming,” Journal of the Royal Statistical Society, Series B, 52, 497–503.
Wolfe, P. (1982), “Checking the Calculation of Gradients,” ACM Transactions on Mathematical Software, 8, 337–343.