The ARIMA Procedure

References

  • Akaike, H. (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control AC-19:716–723.

  • Anderson, T. W. (1971). The Statistical Analysis of Time Series. New York: John Wiley & Sons.

  • Andrews, D. F., and Herzberg, A. M. (1985). A Collection of Problems from Many Fields for the Student and Research Worker. New York: Springer-Verlag.

  • Ansley, C. F. (1979). “An Algorithm for the Exact Likelihood of a Mixed Autoregressive–Moving Average Process.” Biometrika 66:59–65.

  • Ansley, C. F., and Newbold, P. (1980). “Finite Sample Properties of Estimators for Autoregressive Moving-Average Models.” Journal of Econometrics 13:159–183.

  • Bhansali, R. J. (1980). “Autoregressive and Window Estimates of the Inverse Correlation Function.” Biometrika 67:551–566.

  • Box, G. E. P., and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Rev. ed. San Francisco: Holden-Day.

  • Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time Series Analysis: Forecasting and Control. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall.

  • Box, G. E. P., and Tiao, G. C. (1975). “Intervention Analysis with Applications to Economic and Environmental Problems.” Journal of the American Statistical Association 70:70–79.

  • Brocklebank, J. C., and Dickey, D. A. (2003). SAS for Forecasting Time Series. 2nd ed. Cary, NC: SAS Institute Inc.

  • Brockwell, P. J., and Davis, R. A. (1991). Time Series: Theory and Methods. 2nd ed. New York: Springer-Verlag.

  • Chatfield, C. (1980). “Inverse Autocorrelations.” Journal of the Royal Statistical Society, Series A 142:363–377.

  • Choi, B. (1992). ARMA Model Identification. New York: Springer-Verlag.

  • Cleveland, W. S. (1972). “The Inverse Autocorrelations of a Time Series and Their Applications.” Technometrics 14:277.

  • Cobb, G. W. (1978). “The Problem of the Nile: Conditional Solution to a Change Point Problem.” Biometrika 65:243–251.

  • Davidson, J. (1981). “Problems with the Estimation of Moving Average Models.” Journal of Econometrics 16:295.

  • Davies, N., Triggs, C. M., and Newbold, P. (1977). “Significance Levels of the Box-Pierce Portmanteau Statistic in Finite Samples.” Biometrika 64:517–522.

  • De Jong, P., and Penzer, J. (1998). “Diagnosing Shocks in Time Series.” Journal of the American Statistical Association 93:796–806.

  • Dickey, D. A. (1976). Estimation and Testing of Nonstationary Time Series. Ph.D. diss., Iowa State University.

  • Dickey, D. A., and Fuller, W. A. (1979). “Distribution of the Estimators for Autoregressive Time Series with a Unit Root.” Journal of the American Statistical Association 74:427–431.

  • Dickey, D. A., Hasza, D. P., and Fuller, W. A. (1984). “Testing for Unit Roots in Seasonal Time Series.” Journal of the American Statistical Association 79:355–367.

  • Dunsmuir, W. (1984). “Large Sample Properties of Estimation in Time Series Observed at Unequally Spaced Times.” In Time Series Analysis of Irregularly Observed Data, edited by E. Parzen, 58–77. Vol. 25 of Lecture Notes in Statistics. New York: Springer-Verlag.

  • Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., and Chen, B. C. (1998). “New Capabilities and Methods of the X-12-ARIMA Seasonal Adjustment Program.” Journal of Business and Economic Statistics 16:127–176.

  • Fuller, W. A. (1976). Introduction to Statistical Time Series. New York: John Wiley & Sons.

  • Hamilton, J. D. (1994). Time Series Analysis. Princeton, NJ: Princeton University Press.

  • Hannan, E. J., and Rissanen, J. (1982). “Recursive Estimation of Mixed Autoregressive Moving Average Order.” Biometrika 69:81–94.

  • Harvey, A. C. (1981). Time Series Models. New York: John Wiley & Sons.

  • Jones, R. H. (1980). “Maximum Likelihood Fitting of ARMA Models to Time Series with Missing Observations.” Technometrics 22:389–396.

  • Kohn, R., and Ansley, C. F. (1985). “Efficient Estimation and Prediction in Time Series Regression Models.” Biometrika 72:694–697.

  • Ljung, G. M., and Box, G. E. P. (1978). “On a Measure of Lack of Fit in Time Series Models.” Biometrika 65:297–303.

  • Montgomery, D. C., and Johnson, L. A. (1976). Forecasting and Time Series Analysis. New York: McGraw-Hill.

  • Morf, M., Sidhu, G. S., and Kailath, T. (1974). “Some New Algorithms for Recursive Estimation on Constant Linear Discrete Time Systems.” IEEE Transactions on Automatic Control 19:315–323.

  • Nelson, C. R. (1973). Applied Time Series for Managerial Forecasting. San Francisco: Holden-Day.

  • Newbold, P. (1981). “Some Recent Developments in Time Series Analysis.” International Statistical Review 49:53–66.

  • Newton, H. J., and Pagano, M. (1983). “The Finite Memory Prediction of Covariance Stationary Time Series.” SIAM Journal on Scientific and Statistical Computing 4:330–339.

  • Pankratz, A. (1983). Forecasting with Univariate Box-Jenkins Models: Concepts and Cases. New York: John Wiley & Sons.

  • Pankratz, A. (1991). Forecasting with Dynamic Regression Models. New York: John Wiley & Sons.

  • Pearlman, J. G. (1980). “An Algorithm for the Exact Likelihood of a High-Order Autoregressive–Moving Average Process.” Biometrika 67:232–233.

  • Priestley, M. B. (1981). Spectral Analysis and Time Series. London: Academic Press.

  • Schwarz, G. (1978). “Estimating the Dimension of a Model.” Annals of Statistics 6:461–464.

  • Stoffer, D. S., and Toloi, C. M. C. (1992). “A Note on the Ljung-Box-Pierce Portmanteau Statistic with Missing Data.” Statistics and Probability Letters 13:391–396.

  • Tsay, R. S., and Tiao, G. C. (1984). “Consistent Estimates of Autoregressive Parameters and Extended Sample Autocorrelation Function for Stationary and Nonstationary ARMA Models.” Journal of the American Statistical Association 79:84–96.

  • Tsay, R. S., and Tiao, G. C. (1985). “Use of Canonical Analysis in Time Series Model Identification.” Biometrika 72:299–315.

  • Woodfield, T. J. (1987). “Time Series Intervention Analysis Using SAS Software.” In Proceedings of the Twelfth Annual SAS Users Group International Conference, 331–339. Cary, NC: SAS Institute Inc. http://www.sascommunity.org/sugi/SUGI87/Sugi-12-57%20Woodfield.pdf.