The ADAPTIVEREG Procedure

References

  • Asuncion, A., and Newman, D. J. (2007). “UCI Machine Learning Repository.” http://archive.ics.uci.edu/ml/.

  • Bellman, R. E. (1961). Adaptive Control Processes. Princeton, NJ: Princeton University Press.

  • Bowman, A. W., and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. New York: Oxford University Press.

  • Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees. Belmont, CA: Wadsworth.

  • Buja, A., Duffy, D., Hastie, T. J., and Tibshirani, R. (1991). “Discussion: Multivariate Adaptive Regression Splines.” Annals of Statistics 19:93–99.

  • Craven, P., and Wahba, G. (1979). “Smoothing Noisy Data with Spline Functions.” Numerical Mathematics 31:377–403.

  • Friedman, J. H. (1991a). Estimating Functions of Mixed Ordinal and Categorical Variables Using Adaptive Splines. Technical report, Stanford University.

  • Friedman, J. H. (1991b). “Multivariate Adaptive Regression Splines.” Annals of Statistics 19:1–67.

  • Friedman, J. H. (1993). Fast MARS. Technical report, Stanford University.

  • Gu, C., Bates, D. M., Chen, Z., and Wahba, G. (1990). “The Computation of GCV Function through Householder Tridiagonalization with Application to the Fitting of Interaction Splines Models.” SIAM Journal on Matrix Analysis and Applications 10:457–480.

  • Hastie, T. J., and Tibshirani, R. J. (1990). Generalized Additive Models. New York: Chapman & Hall.

  • Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer-Verlag.

  • Owen, A. (1991). “Discussion of 'Multivariate Adaptive Regression Splines' by J. H. Friedman.” Annals of Statistics 19:102–112.

  • Smith, P. L. (1982). Curve Fitting and Modeling with Splines Using Statistical Variable Selection Techniques. Technical report, NASA Langley Research Center.