The PHREG Procedure |
BAYES Statement |
Option |
Description |
---|---|
Monte Carlo Options |
|
Specifies initial values of the chain |
|
Specifies the number of burn-in iterations |
|
Specifies the number of iterations after burn-in |
|
Specifies the sampling algorithm |
|
Specifies the random number generator seed |
|
Sontrols the thinning of the Markov chain |
|
Model and Prior Options |
|
Specifies the prior of the regression coefficients |
|
Specifies details of the piecewise exponential model |
|
Summaries and Diagnostics of the Posterior Samples |
|
Displays convergence diagnostics |
|
Displays diagnostic plots |
|
Displays summary statistics |
|
Posterior Samples |
|
Names a SAS data set for the posterior samples |
The following list describes these options and their suboptions.
specifies a flat prior—that is, the prior that is proportional to a constant ( for all ).
specifies a normal distribution. The normal-options include the following:
specifies a SAS data set that contains the mean and covariance information of the normal prior. The data set must contain the _TYPE_ variable to identify the observation type, and it must contain a variable to represent each regression coefficient. If the data set also contains the _NAME_ variable, values of this variable are used to identify the covariances for the _TYPE_=’COV’ observations; otherwise, the _TYPE_=’COV’ observations are assumed to be in the same order as the explanatory variables in the MODEL statement. PROC PHREG reads the mean vector from the observation with _TYPE_=’MEAN’ and the covariance matrix from observations with _TYPE_=’COV’. For an independent normal prior, the variances can be specified with _TYPE_=’VAR’; alternatively, the precisions (inverse of the variances) can be specified with _TYPE_=’PRECISION’.
specifies a normal prior , where is a diagonal matrix with diagonal elements equal to the variances of the corresponding ML estimator. By default, c=.
specifies the normal prior , where is the identity matrix.
specifies a constant number for g. The default is 1E-6.
specifies that g has a gamma distibution with density . By default, a=b=1E-4.
computes the autocorrelations of lags given by LAGS= list for each parameter. Elements in the list are truncated to integers and repeated values are removed. If the LAGS= option is not specified, autocorrections of lags 1, 5, 10, and 50 are computed for each variable. See the section Autocorrelations for details.
computes the effective sample size of Kass et al. (1998), the correlation time, and the efficiency of the chain for each parameter. See the section Effective Sample Size for details.
computes the Monte Carlo standard error for each parameter. The Monte Caro standard error, which measures the simulation accuracy, is the standard error of the posterior mean estimate and is calculated as the posterior standard deviation divided by the square root of the effective sample size. See the section Standard Error of the Mean Estimate for details.
specifies the level for the stationarity test. The default is the value of the ALPHA= option in the PROC PHREG statement, or 0.05 if that option is not specified.
specifies the level for the halfwidth test. The default is the value of the ALPHA= option in the PROC PHREG statement, or 0.05 if that option is not specified.
specifies a small positive number such that if the halfwidth is less than times the sample mean of the retaining samples, the halfwidth test is passed.
specifies the number of parallel chains used to compute the diagnostic and has to be 2 or larger. The default is NCHAIN=3. The NCHAIN= option is ignored when the INITIAL= option is specified in the BAYES statement, and in such a case, the number of parallel chains is determined by the number of valid observations in the INITIAL= data set.
specifies the significance level for the upper bound. The default is the value of the ALPHA= option in the PROC PHREG statement, or 0.05 if that option is not specified (resulting in a 97.5% bound).
specifies the early fraction of the Markov chain.
specifies the latter fraction of the Markov chain.
specifies the order (a value between 0 and 1) of the quantile of interest. The default is 0.025.
specifies a small positive number as the margin of error for measuring the accuracy of estimation of the quantile. The default is 0.005.
specifies the probability of attaining the accuracy of the estimation of the quantile. The default is 0.95.
specifies the tolerance level (a small positive number) for the test. The default is 0.001.
specifies the SAS data set that contains the initial values of the Markov chains. The INITIAL= data set must contain a variable for each parameter in the model. You can specify multiple rows as the initial values of the parallel chains for the Gelman-Rubin statistics, but posterior summary statistics, diagnostics, and plots are computed only for the first chain.
specifies the number of burn-in iterations before the chains are saved. The default is 2000.
specifies the number of iterations after the burn-in. The default is 10000.
names the SAS data set that contains the posterior samples. See the section OUTPOST= Output Data Set in the BAYES Statement for more information. Alternatively, you can output the posterior samples into a data set, as shown in the following example in which the data set is named PostSamp.
ODS OUTPUT PosteriorSample = PostSamp;
models the baseline hazard parameters in the original scale. The hazard parameters are named Lambda1, Lambda2, , and so on.
models the baseline hazard parameters in the log scale. The log-hazard parameters are named Alpha1, Alpha2, , and so on.
You can choose one of the following two options to specify the partition of the time axis into intervals of constant baseline hazards:
specifies the number of intervals with constant baseline hazard rates. PROC PHREG partitions the time axis into the given number of intervals with approximately equal number of events in each interval.
specifies the list of numbers that partition the time axis into disjoint intervals with constant baseline hazard in each interval. For example, INTERVAL=(100, 150, 200, 250, 300) specifies a model with a constant hazard in the intervals [0,100), [100,150), [150,200), [200,250), [250,300), and [300,). Each interval must contain at least one event; otherwise, the posterior distribution can be improper, and inferences cannot be derived from an improper posterior distribution.
To specify the prior for the baseline hazards () in the original scale, you specify the following:
The default is PRIOR=IMPROPER. The available prior options include the following:
specifies the noninformative and improper prior for all .
specifies a uniform prior on the real line; that is, for all .
specifies an independent gamma prior with density , which can be followed by one of the following gamma-options enclosed in parentheses. The hyperparameters and are the shape and inverse-scale parameters of the gamma distribution, respectively. See the section Independent Gamma Prior for details. The default is for each , setting the prior mean to with variance . This prior is proper and reasonably noninformative.
specifies a data set containing the hyperparameters of the independent gamma prior. The data set must contain the _TYPE_ variable to identify the observation type, and it must contain the variables named Lambda1, Lambda2, ..., and so forth, to represent the hazard parameters. The observation with _TYPE_=’SHAPE’ identifies the shape parameters, and the observation with _TYPE_=’ISCALE’ identifies the inverse-scale parameters.
specifies independent distribution, where ’s are the MLEs of the hazard rates. This prior has mean and variance . By default, c=.
together specify the Gamma prior.
specifies the prior.
specifies a data set containing the hyperparameters of the correlated gamma prior. The data set must contain the _TYPE_ variable to identify the observation type, and it must contain the variables named Lambda1, Lambda2, ..., and so forth, to represent the hazard parameters. The observation with _TYPE_=’SHAPE’ identifies the shape parameters, and the observation with _TYPE_=’ISCALE’ identifies the relative inverse-scale parameters; that is, if and are, respectively, the SHAPE and ISCALE values for , then , and for .
together specify that and for .
specifies that and for .
To specify the prior for , the hazard parameters in the log scale, you specifying the following:
specifies the uniform prior on the real line; that is, for all .
specifies a normal prior distribution on the log-hazard parameters. The normal options include the following. If you do not specify an option, the normal prior , where is the identity matrix, is used.
specifies a SAS data set containing the mean and covariance information of the normal prior. The data set must contain the _TYPE_ variable to identify the observation type, and it must contain variables named Alpha1, Alpha2, ..., and so forth, to represent the log-hazard parameters. If the data set also contains the _NAME_ variable, the value of this variable will be used to identify the covariances for the _TYPE_=’COV’ observations; otherwise, the _TYPE_=’COV’ observations are assumed to be in the same order as the explanatory variables in the MODEL statement. PROC PHREG reads the mean vector from the observation with _TYPE_=’MEAN’ and the covariance matrix from observations with _TYPE_=’COV’. See the section Normal Prior for details. For an independent normal prior, the variances can be specified with _TYPE_=’VAR’; alternatively, the precisions (inverse of the variances) can be specified with _TYPE_=’PRECISION’.
If you have a joint normal prior for the log-hazard parameters and the regression coefficients, specify the same data set containing the mean and covariance information of the multivariate normal distribution in both the COEFFPRIOR=NORMAL(INPUT=) and the PIECEWISE=LOGHAZARD(PRIOR=NORMAL(INPUT=)) options. See the section Joint Multivariate Normal Prior for Log-Hazards and Regression Coefficients for details.
specifies the normal prior , where is a diagonal matrix with diagonal elements equal to the variances of the corresponding ML estimator. By default, c=.
specifies the normal prior , where is the identity matrix.
controls the diagnostic plots produced through ODS Graphics. Three types of plots can be requested: trace plots, autocorrelation function plots, and kernel density plots. By default, the plots are displayed in panels unless the global plot option UNPACK is specified. If you specify more than one type of plots, the plots are displayed by parameters unless the global plot option GROUPBY=TYPE is specified. When you specify only one plot request, you can omit the parentheses around the plot request. For example:
plots=none plots(unpack)=trace plots=(trace autocorr)
You must enable ODS Graphics before requesting plots, for example, like this:
ods graphics on; proc phreg; model y=x; bayes plots=trace; run; end; ods graphics off;
If you have enabled ODS Graphics but do not specify the PLOTS= option in the BAYES statement, then PROC PHREG produces, for each parameter, a panel containing the trace plot, the autocorrelation function plot, and the density plot. This is equivalent to specifying plots=(trace autocorr density).
The global plot options include the following:
creates a fringe plot on the X axis of the density plot.
specifies that the plots be grouped by type.
specifies that the plots be grouped by parameter.
displays a fitted penalized B-spline curve each trace plot.
specifies that all paneled plots be unpacked, meaning that each plot in a panel is displayed separately.
The plot requests include the following:
specifies all types of plots. PLOTS=ALL is equivalent to specifying PLOTS=(TRACE AUTOCORR DENSITY).
displays the autocorrelation function plots for the parameters.
displays the kernel density plots for the parameters.
suppresses all diagnostic plots.
displays the trace plots for the parameters. See the section Visual Analysis via Trace Plots for details.
Consider a model with four parameters, X1–X4. Displays for various specification are depicted as follows.
PLOTS=(TRACE AUTOCORR) displays the trace and autocorrelation plots for each parameter side by side with two parameters per panel:
Display 1 |
Trace(X1) |
Autocorr(X1) |
Trace(X2) |
Autocorr(X2) |
|
Display 2 |
Trace(X3) |
Autocorr(X3) |
Trace(X4) |
Autocorr(X4) |
PLOTS(GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the paneled trace plots, followed by panels of autocorrelation plots:
Display 1 |
Trace(X1) |
|
Trace(X2) |
||
Display 2 |
Trace(X3) |
|
Trace(X4) |
||
Display 3 |
Autocorr(X1) |
Autocorr(X2) |
Autocorr(X3) |
Autocorr(X4) |
PLOTS(UNPACK)=(TRACE AUTOCORR) displays a separate trace plot and a separate correlation plot, parameter by parameter:
Display 1 |
Trace(X1) |
Display 2 |
Autocorr(X1) |
Display 3 |
Trace(X2) |
Display 4 |
Autocorr(X2) |
Display 5 |
Trace(X3) |
Display 6 |
Autocorr(X3) |
Display 7 |
Trace(X4) |
Display 8 |
Autocorr(X4) |
PLOTS(UNPACK GROUPBY=TYPE) = (TRACE AUTOCORR) displays all the separate trace plots followed by the separate autocorrelation plots:
Display 1 |
Trace(X1) |
Display 2 |
Trace(X2) |
Display 3 |
Trace(X3) |
Display 4 |
Trace(X4) |
Display 5 |
Autocorr(X1) |
Display 6 |
Autocorr(X2) |
Display 7 |
Autocorr(X3) |
Display 8 |
Autocorr(X4) |
requests the use of the adaptive rejection Metropolis sampling (ARMS) algorithm to draw the Gibbs samples. ALGORITHM=ARMS is the default.
requests the use of the random walk Metropolis (RWM) algorithm to draw the samples.
specifies an integer seed ranging from 1 to –1 for the random number generator in the simulation. Specifying a seed enables you to reproduce identical Markov chains for the same specification. If the SEED= option is not specified, or if you specify a nonpositive seed, a random seed is derived from the time of day.
controls the probabilities of the credible intervals. The ALPHA= values must be between 0 and 1. Each ALPHA= value produces a pair of 100(1–ALPHA)% equal-tail and HPD intervals for each parameters. The default is the value of the ALPHA= option in the PROC PHREG statement, or 0.05 if that option is not specified (yielding the 95% credible intervals for each parameter).
requests the percentile points of the posterior samples. The PERCENT= values must be between 0 and 100. The default is PERCENT= 25, 50, 75, which yield the 25th, 50th, and 75th percentile points for each parameter.
produces the posterior correlation matrix.
produces the posterior covariance matrix.
produces the means, standard deviations, and percentile points for the posterior samples. The default is to produce the 25th, 50th, and 75th percentile points, but you can use the global PERCENT= option to request specific percentile points.
produces equal-tail credible intervals and HPD intervals. The defult is to produce the 95% equal-tail credible intervals and 95% HPD intervals, but you can use the global ALPHA= option to request intervals of any probabilities.
controls the thinning of the Markov chain. Only one in every samples is used when THINNING=, and if NBI= and NMC=, the number of samples kept is
where [] represents the integer part of the number . The default is THINNING=1.
Copyright © SAS Institute, Inc. All Rights Reserved.