Let 
 denote the covariance function matrix of a random vector. Then, the sparsity-function estimates of 
 is 
            
![\[ \widehat{\mbox{COV}}\left(\hat{\bbeta }(\tau )\right)=\left\{ \begin{array}{l l} \omega ^2(\tau , F)\bOmega ^{-1}/n & \mbox{for a linear model with iid errors}\\ \tau (1-\tau )\mb{H}_ n^{-}\bOmega \mb{H}_ n^{-})/n & \mbox{for a linear-in-parameter model with non-iid settings} \end{array} \right. \]](images/stathpug_hpqtr0082.png)
 where 
 is the vector of the parameter estimates. 
            
If you specify the CLB option in the MODEL
                statement, PROC HPQUANTSELECT outputs the standard error, confidence limits, t value, and Pr > 
 probability for each 
 in the parameter estimates table. Table 14.5 summarizes these statistics for 
. 
            
Table 14.5: More Statistics for 
| 
                            Statistic  | 
                               
                             
                               
                        
                            Definition  | 
                               
                             
                             
                     |
|---|---|---|
| 
                            Standard error:   | 
                             
                               
                               
                        
                               | 
                             
                             
                     |
| 
                               | 
                             
                               
                               
                        
                               | 
                             
                             
                     |
| 
                            t value  | 
                             
                               
                               
                        
                               | 
                             
                             
                     |
| 
                             Pr >   | 
                             
                               
                               
                        
                            p-value of the t value  | 
                             
                             
                     
 Here 
 is the 
 element of 
, and 
 denotes the 
-level student’s t score with 1 degree of freedom.