
Let
be the probability of endorsing category k for item j for a subject whose ability score is
. Then the item information function can be defined as
![\[ I_ j(\theta ) = \sum _{k=1}^{K} I_ k(\theta ) P_{jk}(\theta ) \]](images/statug_irt0129.png)
where
![\[ I_ k(\theta ) = -\frac{\partial ^2}{\partial \theta ^2}\log P_{jk}(\theta ) \]](images/statug_irt0130.png)
The test information function is the sum of the information functions of the items in the test. The information function of a test that has J items is
![\[ I(\theta ) = \sum _{j=1}^{J} I_ j(\theta ) \]](images/statug_irt0131.png)