
Based on the model that is specified in the section Notation for the Item Response Theory Model, the marginal likelihood is
![\[ L(\btheta |U) = \prod _{i=1}^ N \int \prod _{j=1}^ J \prod _{k=1}^ K(P_{ijk})^{v_{ijk}} \phi (\bm {\eta };\bmu ,\bSigma )\, d\bm {\eta } = \prod _{i=1}^ N \int f(u_ i|\bm {\eta }) \phi (\bm {\eta };\bmu ,\bSigma )\, d\bm {\eta } \]](images/statug_irt0061.png)
where
,
is the multivariate normal density function for the latent factor
, and
is a set of all the model parameters. The corresponding log likelihood is
![\[ \log L(\btheta |U) = \sum _{i=1}^ N \log \int \prod _{j=1}^ J \prod _{k=1}^ K(P_{ijk})^{v_{ijk}} \phi (\bm {\eta };\bmu ,\bSigma )\, d\bm {\eta } \]](images/statug_irt0066.png)
Integrations in the preceding equation cannot be solved analytically and need to be approximated by using numerical integration,
![\[ \log \tilde{L}(\btheta |U) = \sum _{i=1}^ N \log \left[ \sum _{g=1}^{G^ d}\left[\prod _{j=1}^ J \prod _{k=1}^ K(P_{ijk}(\mb{x}_ g))^{v_{ijk}} \frac{\phi (\mb{x}_ g;\bmu ,\bSigma )}{\phi (\mb{x}_ g;0,I)}\right]w_ g\right] \]](images/statug_irt0067.png)
where d is the number of factors, G is the number of quadrature points per dimension, and
and
are the quadrature points and weights, respectively.