Given a new vector of covariates
, the linear predictor is computed as
, where
is the maximum likelihood estimate of
. The variance of
is estimated by
![\[ \hat{\sigma }_{\bZ _{\mr{new}}}^2 = \bZ _{\mr{new}}’ \bSigma _{\hat{\bbeta }} \bZ _{\mr{new}} \]](images/statug_icphreg0113.png)
where
denotes the estimated covariance matrix for
.
Suppose the estimated baseline hazard is
. Given
, the cumulative hazard function can be predicted by
![\[ \hat{\Lambda }(t;\bZ _{\mr{new}}) = \hat{\Lambda }_0(t) e^{\bZ _{\mr{new}}'\hat{\bbeta }} \]](images/statug_icphreg0116.png)
Denote the vector of parameters that is used for obtaining
as
. It is apparent that
. The vector of parameters that need to be estimated can be represented as
.
The variance of
can be estimated by applying the delta method:
![\[ \hat{\sigma }^2(\hat{\Lambda }(t;\bZ _{\mr{new}})) = P(t,\hat{\bomega })’ \bSigma P(t,\hat{\bomega }) \]](images/statug_icphreg0121.png)
where
![\[ P(t,\bomega ) = \frac{\partial \Lambda (t;\bZ _{\mr{new}})}{\partial \bomega } \]](images/statug_icphreg0122.png)
and
denotes the estimated covariance matrix for
.
Given
, the predicted survival function is estimated by
![\[ \hat{S}(t;\bZ _{\mr{new}}) = \exp (\hat{\Lambda }(t;\bZ _{\mr{new}})) \]](images/statug_icphreg0124.png)
The standard error of
can be conveniently estimated by an application of the delta method:
![\[ \hat{\sigma }(\hat{S}(t;\bZ _{\mr{new}})) = \hat{S}(t;\bZ _{\mr{new}}) \hat{\sigma }(\hat{\Lambda }(t;\bZ _{\mr{new}})) \]](images/statug_icphreg0126.png)
By default, a natural log transformation is applied to obtain the pointwise confidence limits for
and
. You can use the CLTYPE=
option to specify a different transformation for
.