Documentation Example 9 for PROC PSMATCH
/****************************************************************/
/* S A S S A M P L E L I B R A R Y */
/* */
/* NAME: PSMCHEX09 */
/* TITLE: Documentation Example 9 for PROC PSMATCH */
/* PRODUCT: STAT */
/* SYSTEM: ALL */
/* KEYS: Propensity score matching */
/* PROCS: PSMATCH */
/* DATA: */
/* */
/* SUPPORT: Yang Yuan UPDATE: May 15, 2017 */
/* REF: PROC PSMATCH, EXAMPLE 9 */
/* MISC: */
/****************************************************************/
data drug1;
do jorder=1 to 490;
if (ranuni(99) < .55) then Gender='Male ';
else Gender='Female';
Age= 30 + 20*ranuni(99) + 3*rannor(9);
if (Age < 25) then Age= 20 - (Age-25)/2;
Age= int(Age);
BMI= 20 + 6*ranuni(99) + 0.02*Age + rannor(9);
if (BMI < 18) then BMI= 18 - (BMI-18)/4;
BMI= int(BMI*100) / 100;
pscore= 4. - 0.35*Age + 0.35*BMI + 0.01*rannor(99);
if (Gender='Female') then pscore= pscore - 0.2;
id1= ranuni(99);
output;
end;
run;
proc sort data=drug1 out=drug2;
by pscore;
run;
proc rank data=drug2 out=drug3 descending;
var pscore;
ranks porder;
run;
data drug4;
set drug3;
if (porder < 100) then do;
if (ranuni(99) < .45) then Drug= 'Drug_X';
else Drug= 'Drug_A';
end;
else if (porder < 300) then do;
if (ranuni(99) < .30) then Drug= 'Drug_X';
else Drug= 'Drug_A';
end;
else if (porder < 450) then do;
if (ranuni(99) < .15) then Drug= 'Drug_X';
else Drug= 'Drug_A';
end;
else Drug= 'Drug_A';
run;
data drug5;
set drug4;
if (porder > 4);
run;
proc sort data=drug5;
by id1;
run;
data drug5;
set drug5;
PatientID= _n_;
run;
proc sort data=drug5 out=drugs (keep=PatientID Drug Gender Age BMI);
by jorder;
run;
data drugs;
set drugs;
PatientID= _n_;
LDL= 4*rannor(611213);
if (Drug='Drug_X') then LDL= 2 + 3*rannor(960303);
if (Gender='Female') then LDL= LDL + 2 + 0.5*rannor(890221);
if (BMI < 25) then LDL= LDL + 1.5 + 0.5*rannor(890221);
if (Age < 40) then LDL= LDL + 1.5 + 0.5*rannor(890221);
LDL= 0.01 *int(100*LDL);
run;
proc print data=Drugs(obs=8);
var PatientID Drug Gender Age BMI;
run;
proc psmatch data=drugs region=cs;
class Drug Gender;
psmodel Drug(Treated='Drug_X')= Gender Age BMI;
match method=optimal(k=1) exact=Gender distance=lps caliper=0.25;
output out(obs=match)=Outgs lps=_Lps matchid=_MatchID;
run;
data Cholesterol;
set Outgs;
keep PatientID LDL;
run;
proc sort data=Outgs out=Outgs1;
by PatientID;
run;
proc sort data=Cholesterol out=Cholesterol1;
by PatientID;
run;
data OutEx9a;
merge Outgs1 Cholesterol1;
by PatientID;
run;
proc print data=OutEx9a(obs=8);
var PatientID Drug Gender Age BMI LDL _MatchID;
run;
proc sort data=OutEx9a out=OutEx9b;
by _MatchID Drug;
run;
proc transpose data=OutEx9b out=OutEx9c;
by _MatchID;
var LDL;
run;
data OutEx9c;
set OutEx9c;
Diff= Col2 - Col1;
drop Col1 COl2;
run;
proc print data=OutEx9c(obs=4);
run;
ods select TestsForLocation;
proc univariate data=OutEx9c;
var Diff;
ods output TestsForLocation=LocTest;
run;
data SgnRank;
set LocTest;
nPairs=113;
if (Test='Signed Rank');
SgnRank= Stat + nPairs*(nPairs+1)/4;
keep nPairs SgnRank;
run;
proc print data=SgnRank;
var nPairs SgnRank;
run;
data Test1;
set SgnRank;
mean0 = nPairs*(nPairs+1)/2;
variance0 = mean0*(2*nPairs+1)/3;
do Gamma=1 to 1.5 by 0.05;
mean = Gamma/(1+Gamma) * mean0;
variance = Gamma/(1+Gamma)**2 * variance0;
tTest = (SgnRank - mean) / sqrt(variance);
pValue = 1 - probt(tTest, nPairs-1);
output;
end;
run;
proc print data=Test1;
run;