Resources

Example 4 for PROC HPLOGISTIC

/****************************************************************/
/*          S A S   S A M P L E   L I B R A R Y                 */
/*                                                              */
/*    NAME: hplogex4                                            */
/*   TITLE: Example 4 for PROC HPLOGISTIC                       */
/*    DESC: Pima Indians Diabetes data set                      */
/*     REF: Lim, Loh and Shih (2000)                            */
/* PRODUCT: HPSTAT                                              */
/*  SYSTEM: ALL                                                 */
/*    KEYS: logistic regression analysis,                       */
/*          binary response data                                */
/*   PROCS: HPLOGISTIC                                          */
/*    DATA: McCullagh and Nelder (1989, p.175)                  */
/*                                                              */
/* SUPPORT: Bob Derr                                            */
/*    MISC:                                                     */
/*                                                              */
/****************************************************************/

/*****************************************************************
Example 4: Partitioning Data
*****************************************************************/

/*
This example uses the Pima Indian Diabetes data set, which can be
obtained from the UCI Machine Learning Repository (Asuncion and
Newman, 2007).  It is extracted from a larger database that was
originally owned by the National Institute of Diabetes and
Digestive and Kidney Diseases. Data are for female patients who are
at least 21 years old, are of Pima Indian heritage, and live near
Phoenix, Arizona.  The objective of this study is to investigate
the relationship between a diabetes diagnosis and variables that
represent physiological measurements and medical attributes. Some
missing or invalid observations are removed from the analysis.  The
reduced data set contains 532 records. The DATA step creates the
data set Pima containing the following variables:

   NPreg      Number of pregnancies
   Glucose    Two-hour plasma glucose concentration in an oral glucose
              tolerance test
   Pressure   Diastolic blood pressure (mm Hg)
   Triceps    Triceps skin fold thickness (mm)
   BMI        Body mass index (weight in kg/(height in m)**2)
   Pedigree   Diabetes pedigree function
   Age        Age (years)
   Diabetes   0 if test negative for diabetes, 1 if test positive
   Role       0 for training role, 1 for test
*/

title 'Example 4: Partitioning Data';

title 'Pima Indian Diabetes Study';
data Pima;
   input NPreg Glucose Pressure Triceps BMI Pedigree Age Diabetes Role@@;
   datalines;
 6  148   72  35  33.6  0.627  50  1  0   1   85   66  29  26.6  0.351  31  0  1
 1   89   66  23  28.1  0.167  21  0  0   3   78   50  32    31  0.248  26  1  0
 2  197   70  45  30.5  0.158  53  1  0   5  166   72  19  25.8  0.587  51  1  1
 0  118   84  47  45.8  0.551  31  1  0   1  103   30  38  43.3  0.183  33  0  0
 3  126   88  41  39.3  0.704  27  0  0   9  119   80  35    29  0.263  29  1  0
 1   97   66  15  23.2  0.487  22  0  1   5  109   75  26    36  0.546  60  0  0
 3   88   58  11  24.8  0.267  22  0  0  10  122   78  31  27.6  0.512  45  0  0
 4  103   60  33    24  0.966  33  0  1   9  102   76  37  32.9  0.665  46  1  1
 2   90   68  42  38.2  0.503  27  1  1   4  111   72  47  37.1   1.39  56  1  0
 3  180   64  25    34  0.271  26  0  1   7  106   92  18  22.7  0.235  48  0  0
 9  171  110  24  45.4  0.721  54  1  0   0  180   66  39    42  1.893  25  1  0
 2   71   70  27    28  0.586  22  0  0   1  103   80  11  19.4  0.491  22  0  1
 1  101   50  15  24.2  0.526  26  0  1   5   88   66  21  24.4  0.342  30  0  0
 7  150   66  42  34.7  0.718  42  0  1   1   73   50  10    23  0.248  21  0  0
 0  105   64  41  41.5  0.173  22  0  0   5   99   74  27    29  0.203  32  0  0
 0  109   88  30  32.5  0.855  38  1  0   1   95   66  13  19.6  0.334  25  0  0
 4  146   85  27  28.9  0.189  27  0  0   2  100   66  20  32.9  0.867  28  1  0
 4  129   86  20  35.1  0.231  23  0  0   5   95   72  33  37.7   0.37  27  0  1
 2  112   66  22    25  0.307  24  0  0   3  113   44  13  22.4   0.14  22  0  1
 7   83   78  26  29.3  0.767  36  0  0   0  101   65  28  24.6  0.237  22  0  0
13  106   72  54  36.6  0.178  45  0  1   2  100   68  25  38.5  0.324  26  0  0
15  136   70  32  37.1  0.153  43  1  1   4  123   80  15    32  0.443  34  0  0
 7   81   78  40  46.7  0.261  42  0  0   2   92   62  28  31.6   0.13  24  0  0
 6   93   50  30  28.7  0.356  23  0  0   1  122   90  51  49.7  0.325  31  1  1
 1   81   72  18  26.6  0.283  24  0  0   1  126   56  29  28.7  0.801  21  0  0
 4  144   58  28  29.5  0.287  37  0  0   1   89   76  34  31.2  0.192  23  0  1
 7  160   54  32  30.5  0.588  39  1  0   4   97   60  23  28.2  0.443  22  0  1
 0  162   76  56  53.2  0.759  25  1  1   2  107   74  30  33.6  0.404  23  0  0
 1   88   30  42    55  0.496  26  1  0   1  117   88  24  34.5  0.403  40  1  0
 4  173   70  14  29.7  0.361  33  1  1   3  170   64  37  34.5  0.356  30  1  0
 8   84   74  31  38.3  0.457  39  0  0   0  100   70  26  30.8  0.597  21  0  0
 0   93   60  25  28.7  0.532  22  0  0   5  106   82  30  39.5  0.286  38  0  0
 2  108   52  26  32.5  0.318  22  0  0   2  106   64  35  30.5    1.4  34  0  1
 2   90   70  17  27.3  0.085  22  0  1   9  156   86  28  34.3  1.189  42  1  0
 1  153   82  42  40.6  0.687  23  0  0   7  152   88  44    50  0.337  36  1  0
 2   88   74  19    29  0.229  22  0  0  17  163   72  41  40.9  0.817  47  1  1
 4  151   90  38  29.7  0.294  36  0  0   7  102   74  40  37.2  0.204  45  0  0
 0  114   80  34  44.2  0.167  27  0  0   6  104   74  18  29.9  0.722  41  1  0
 2   75   64  24  29.7   0.37  33  0  0   8  179   72  42  32.7  0.719  36  1  1
 0  129  110  46  67.1  0.319  26  1  0   1  128   98  41    32  1.321  33  1  0
 8  109   76  39  27.9   0.64  31  1  1   4  109   64  44  34.8  0.905  26  1  0
 0  113   80  16    31  0.874  21  0  0   0  108   68  20  27.3  0.787  32  0  1
 5  111   72  28  23.9  0.407  27  0  0   8  196   76  29  37.5  0.605  57  1  0
 2   81   60  22  27.7   0.29  25  0  0   0  147   85  54  42.8  0.375  24  0  0
 5  109   62  41  35.8  0.514  25  1  0   6  125   68  30    30  0.464  32  0  0
 5   85   74  22    29  1.224  32  1  1   7  142   60  33  28.8  0.687  61  0  0
 1  100   66  15  23.6  0.666  26  0  1   1   87   78  27  34.6  0.101  22  0  0
 3  162   52  38  37.2  0.652  24  1  0   4  197   70  39  36.7  2.329  31  0  1
 0  117   80  31  45.2  0.089  24  0  0   6  134   80  37  46.2  0.238  46  1  0
 3   74   68  28  29.7  0.293  23  0  1   7  181   84  21  35.9  0.586  51  1  0
 0  179   90  27  44.1  0.686  23  1  1   1   91   64  24  29.2  0.192  21  0  0
 4   91   70  32  33.1  0.446  22  0  0   6  119   50  22  27.1  1.318  33  1  0
 2  146   76  35  38.2  0.329  29  0  1   9  184   85  15    30  1.213  49  1  0
 0  165   90  33  52.3  0.427  23  0  0   9  124   70  33  35.4  0.282  34  0  0
 1  111   86  19  30.1  0.143  23  0  0   2   90   80  14  24.4  0.249  24  0  1
 1  113   64  35  33.6  0.543  21  1  0   3  111   56  39  30.1  0.557  30  0  0
11  155   76  28  33.3  1.353  51  1  0   4   95   70  32  32.1  0.612  24  0  1
 5   96   74  18  33.6  0.997  43  0  0   2  128   64  42    40  1.101  24  0  0
10  101   86  37  45.6  1.136  38  1  0   2  108   62  32  25.2  0.128  21  0  0
 2  100   70  52  40.5  0.677  25  0  1   7  106   60  24  26.5  0.296  29  1  0
 0  104   64  23  27.8  0.454  23  0  1   2  108   62  10  25.3  0.881  22  0  1
 7  133   88  15  32.4  0.262  37  0  0   7  136   74  26    26  0.647  51  0  0
 1  119   86  39  45.6  0.808  29  1  0   4   96   56  17  20.8   0.34  26  0  0
 0   78   88  29  36.9  0.434  21  0  0   0  107   62  30  36.6  0.757  25  1  0
 6  151   62  31  35.5  0.692  28  0  0   2  146   70  38    28  0.337  29  1  0
 0  126   84  29  30.7   0.52  24  0  0   2  144   58  33  31.6  0.422  25  1  0
 2  120   76  37  39.7  0.215  29  0  0  10  161   68  23  25.5  0.326  47  1  0
 0  128   68  19  30.5  1.391  25  1  0   2  124   68  28  32.9  0.875  30  1  1
 2  155   74  17  26.6  0.433  27  1  1   3  113   50  10  29.5  0.626  25  0  0
 7  109   80  31  35.9  1.127  43  1  1   3  115   66  39  38.1   0.15  28  0  0
13  152   90  33  26.8  0.731  43  1  0   2  112   75  32  35.7  0.148  21  0  0
 1  157   72  21  25.6  0.123  24  0  1   1  122   64  32  35.1  0.692  30  1  0
 2  102   86  36  45.5  0.127  23  1  1   6  105   70  32  30.8  0.122  37  0  1
 8  118   72  19  23.1  1.476  46  0  0   2   87   58  16  32.7  0.166  25  0  0
 1   95   60  18  23.9   0.26  22  0  1   1  130   70  13  25.9  0.472  22  0  1
 1   95   74  21  25.9  0.673  36  0  0   8  126   88  36  38.5  0.349  49  0  0
 1  139   46  19  28.7  0.654  22  0  0   3   99   62  19  21.8  0.279  26  0  1
 1  125   50  40  33.3  0.962  28  1  0   1  196   76  36  36.5  0.875  29  1  0
 5  189   64  33  31.2  0.583  29  1  0   5  103  108  37  39.2  0.305  65  0  1
 4  147   74  25  34.9  0.385  30  0  1   5   99   54  28    34  0.499  30  0  0
 3   81   86  16  27.5  0.306  22  0  1   3  173   82  48  38.4  2.137  25  1  0
 0   84   64  22  35.8  0.545  21  0  1   0   98   82  15  25.2  0.299  22  0  1
 1   87   60  37  37.2  0.509  22  0  1   0   93  100  39  43.4  1.021  35  0  0
 0  105   68  22    20  0.236  22  0  1   1   90   62  18  25.1  1.268  25  0  0
 1  125   70  24  24.3  0.221  25  0  0   1  119   54  13  22.3  0.205  24  0  1
 5  116   74  29  32.3   0.66  35  1  0   8  105  100  36  43.3  0.239  45  1  0
 3  100   68  23  31.6  0.949  28  0  1   1  131   64  14  23.7  0.389  21  0  0
 2  127   58  24  27.7    1.6  25  0  0   3   96   56  34  24.7  0.944  39  0  1
 3  193   70  31  34.9  0.241  25  1  0   5  136   84  41    35  0.286  35  1  1
 9   72   78  25  31.6   0.28  38  0  0   1  172   68  49  42.4  0.702  28  1  1
 6  102   90  39  35.7  0.674  28  0  0   1  112   72  30  34.4  0.528  25  0  0
 1  143   84  23  42.4  1.076  22  0  0   3  173   84  33  35.7  0.258  22  1  0
 4  144   82  32  38.5  0.554  37  1  0   3  129   64  29  26.4  0.219  28  1  0
 1  119   88  41  45.3  0.507  26  0  0   2   94   68  18    26  0.561  21  0  1
 0  102   64  46  40.6  0.496  21  0  0   8  151   78  32  42.9  0.516  36  1  0
 1  181   64  30  34.1  0.328  38  1  0   1   95   82  25    35  0.233  43  1  0
 3   89   74  16  30.4  0.551  38  0  0   1   80   74  11    30  0.527  22  0  0
 1   90   68   8  24.5  1.138  36  0  0   0  189  104  25  34.3  0.435  41  1  1
 4  117   64  27  33.2   0.23  24  0  0   0  180   78  63  59.4   2.42  25  1  1
 0  104   64  37  33.6   0.51  22  1  0   0  120   74  18  30.5  0.285  26  0  1
 1   82   64  13  21.2  0.415  23  0  0   0   91   68  32  39.9  0.381  25  0  1
 9  134   74  33  25.9   0.46  81  0  1   9  120   72  22  20.8  0.733  48  0  0
 8   74   70  40  35.3  0.705  39  0  0   5   88   78  30  27.6  0.258  37  0  0
 0  124   56  13  21.8  0.452  21  0  1   0   97   64  36  36.8    0.6  25  0  1
 1  144   82  40  41.3  0.607  28  0  1   0  137   70  38  33.2   0.17  22  0  0
 4  132   86  31    28  0.419  63  0  1   3  158   70  30  35.5  0.344  35  1  0
 0  123   88  37  35.2  0.197  29  0  0   0   84   82  31  38.2  0.233  23  0  0
 0  135   68  42  42.3  0.365  24  1  1   1  139   62  41  40.7  0.536  21  0  0
 0  173   78  32  46.5  1.159  58  0  0   2   83   65  28  36.8  0.629  24  0  1
 2   89   90  30  33.5  0.292  42  0  1   4   99   68  38  32.8  0.145  33  0  0
 4  125   70  18  28.9  1.144  45  1  0   2   81   72  15  30.1  0.547  25  0  1
 6  154   74  32  29.3  0.839  39  0  0   2  117   90  19  25.2  0.313  21  0  1
 3   84   72  32  37.2  0.267  28  0  1   7   94   64  25  33.3  0.738  41  0  0
 3   96   78  39  37.3  0.238  40  0  0  12   84   72  31  29.7  0.297  46  1  0
 3   99   54  19  25.6  0.154  24  0  0   3  163   70  18  31.6  0.268  28  1  0
 9  145   88  34  30.3  0.771  53  1  1   6  129   90   7  19.6  0.582  60  0  1
 2   68   70  32    25  0.187  25  0  1   3   87   60  18  21.8  0.444  21  0  0
 2  122   60  18  29.8  0.717  22  0  1   1   77   56  30  33.3  1.251  24  0  1
 0  127   80  37  36.3  0.804  23  0  0   3  128   72  25  32.4  0.549  27  1  0
10   90   85  32  34.9  0.825  56  1  1   4   84   90  23  39.5  0.159  25  0  0
 1   88   78  29    32  0.365  29  0  0   8  186   90  35  34.5  0.423  37  1  1
 5  187   76  27  43.6  1.034  53  1  0   4  131   68  21  33.1   0.16  28  0  1
 1  116   70  28  27.4  0.204  21  0  1   3   84   68  30  31.9  0.591  25  0  0
 1   88   62  24  29.9  0.422  23  0  0   1   84   64  23  36.9  0.471  28  0  1
11  103   68  40  46.2  0.126  42  0  0   6   99   60  19  26.9  0.497  32  0  0
 1   99   72  30  38.6  0.412  21  0  1   3  111   58  31  29.5   0.43  22  0  1
 2   98   60  17  34.7  0.198  22  0  0   1  143   86  30  30.1  0.892  23  0  1
 1  119   44  47  35.5   0.28  25  0  1   6  108   44  20    24  0.813  35  0  0
 3  176   86  27  33.3  1.154  52  1  0  11  111   84  40  46.8  0.925  45  1  0
 2  112   78  50  39.4  0.175  24  0  0   2   82   52  22  28.5  1.699  25  0  1
 6  123   72  45  33.6  0.733  34  0  0   1   89   24  19  27.8  0.559  21  0  1
 1  108   88  19  27.1    0.4  24  0  0   1  124   60  32  35.8  0.514  21  0  0
 1  181   78  42    40  1.258  22  1  1   1   92   62  25  19.5  0.482  25  0  1
 0  152   82  39  41.5   0.27  27  0  1   3  174   58  22  32.9  0.593  36  1  1
 6  105   80  28  32.5  0.878  26  0  0  11  138   74  26  36.1  0.557  50  1  1
 2   68   62  13  20.1  0.257  23  0  0   9  112   82  24  28.2  1.282  50  1  1
 0   94   70  27  43.5  0.347  21  0  1   4   90   88  47  37.7  0.362  29  0  1
 4   94   65  22  24.7  0.148  21  0  1   0  102   78  40  34.5  0.238  24  0  1
 1  128   82  17  27.5  0.115  22  0  1   7   97   76  32  40.9  0.871  32  1  0
 1  100   74  12  19.5  0.149  28  0  0   3  103   72  30  27.6   0.73  27  0  0
 0  179   50  36  37.8  0.455  22  1  0  11  136   84  35  28.3   0.26  42  1  0
 1  117   60  23  33.8  0.466  27  0  1   2  155   52  27  38.7   0.24  25  1  0
 2  101   58  35  21.8  0.155  22  0  0   1  112   80  45  34.8  0.217  24  0  1
 4  145   82  18  32.5  0.235  70  1  1  10  111   70  27  27.5  0.141  40  1  0
 6   98   58  33    34   0.43  43  0  1   6  165   68  26  33.6  0.631  49  0  1
10   68  106  23  35.5  0.285  47  0  0   3  123  100  35  57.3   0.88  22  0  0
 0  162   76  36  49.6  0.364  26  1  0   0   95   64  39  44.6  0.366  22  0  0
 2  129   74  26  33.2  0.591  25  0  0   1  107   50  19  28.3  0.181  29  0  0
 7  142   90  24  30.4  0.128  43  1  1   3  169   74  19  29.9  0.268  31  1  0
 6   80   80  36  39.8  0.177  28  0  0   2  127   46  21  34.4  0.176  22  0  0
 2   93   64  32    38  0.674  23  1  1   5  126   78  27  29.6  0.439  40  0  0
10  129   62  36  41.2  0.441  38  1  0   0  134   58  20  26.4  0.352  21  0  1
 7  187   50  33  33.9  0.826  34  1  0   3  173   78  39  33.8   0.97  31  1  0
10   94   72  18  23.1  0.595  56  0  1   1  108   60  46  35.5  0.415  24  0  0
 5  117   86  30  39.1  0.251  42  0  1   1  116   78  29  36.1  0.496  25  0  0
 0  141   84  26  32.4  0.433  22  0  0   2  174   88  37  44.5  0.646  24  1  1
 2  106   56  27    29  0.426  22  0  1   0  126   86  27  27.4  0.515  21  0  1
 8   65   72  23    32    0.6  42  0  0   2   99   60  17  36.6  0.453  21  0  1
11  120   80  37  42.3  0.785  48  1  0   3  102   44  20  30.8    0.4  26  0  0
 1  109   58  18  28.5  0.219  22  0  0  13  153   88  37  40.6  1.174  39  0  0
12  100   84  33    30  0.488  46  0  1   1  147   94  41  49.3  0.358  27  1  1
 3  187   70  22  36.4  0.408  36  1  1   1  121   78  39    39  0.261  28  0  0
 3  108   62  24    26  0.223  25  0  1   0  181   88  44  43.3  0.222  26  1  0
 1  128   88  39  36.5  1.057  37  1  1   2   88   58  26  28.4  0.766  22  0  0
 9  170   74  31    44  0.403  43  1  0  10  101   76  48  32.9  0.171  63  0  1
 5  121   72  23  26.2  0.245  30  0  0   1   93   70  31  30.4  0.315  23  0  1
 5   86   68  28  30.2  0.364  24  0  0   7  195   70  33  25.1  0.163  55  1  1
 5   77   82  41  35.8  0.156  35  0  0   0  165   76  43  47.9  0.259  26  0  0
 0  107   60  25  26.4  0.133  23  0  1   5   97   76  27  35.6  0.378  52  1  0
 3   83   58  31  34.3  0.336  25  0  0   1  193   50  16  25.9  0.655  24  0  0
 3  142   80  15  32.4    0.2  63  0  0   2  128   78  37  43.3  1.224  31  1  1
 0  137   40  35  43.1  2.288  33  1  0   9  154   78  30  30.9  0.164  45  0  1
 1  189   60  23  30.1  0.398  59  1  0  12   92   62   7  27.6  0.926  44  1  0
 1   86   66  52  41.3  0.917  29  0  0   4   99   76  15  23.2  0.223  21  0  0
 1  109   60   8  25.4  0.947  21  0  0  11  143   94  33  36.6  0.254  51  1  0
 1  149   68  29  29.3  0.349  42  1  0   0  139   62  17  22.1  0.207  21  0  0
 2   99   70  16  20.4  0.235  27  0  1   1  100   66  29    32  0.444  42  0  0
 4   83   86  19  29.3  0.317  34  0  1   0  101   64  17    21  0.252  21  0  1
 1   87   68  34  37.6  0.401  24  0  0   9  164   84  21  30.8  0.831  32  1  0
 1   99   58  10  25.4  0.551  21  0  1   0  140   65  26  42.6  0.431  24  1  0
 5  108   72  43  36.1  0.263  33  0  1   2  110   74  29  32.4  0.698  27  0  1
 1   79   60  42  43.5  0.678  23  0  1   3  148   66  25  32.5  0.256  22  0  0
 0  121   66  30  34.3  0.203  33  1  1   3  158   64  13  31.2  0.295  24  0  0
 2  105   80  45  33.7  0.711  29  1  0  13  145   82  19  22.2  0.245  57  0  0
 1   79   80  25  25.4  0.583  22  0  0   1   71   48  18  20.4  0.323  22  0  1
 0  102   86  17  29.3  0.695  27  0  1   0  119   66  27  38.8  0.259  22  0  0
 8  176   90  34  33.7  0.467  58  1  1   1   97   68  21  27.2  1.095  22  0  1
 4  129   60  12  27.5  0.527  31  0  1   1   97   64  19  18.2  0.299  21  0  0
 0   86   68  32  35.8  0.238  25  0  0   2  125   60  20  33.8  0.088  31  0  0
 5  123   74  40  34.1  0.269  28  0  0   2   92   76  20  24.2  1.698  28  0  0
 3  171   72  33  33.3  0.199  24  1  1   1  199   76  43  42.9  1.394  22  1  0
 3  116   74  15  26.3  0.107  24  0  0   2   83   66  23  32.2  0.497  22  0  0
 8  154   78  32  32.4  0.443  45  1  1   1  114   66  36  38.1  0.289  21  0  1
 1  106   70  28  34.2  0.142  22  0  1   4  127   88  11  34.5  0.598  28  0  0
 1  124   74  36  27.8    0.1  30  0  1   1  109   38  18  23.1  0.407  26  0  0
 2  123   48  32  42.1   0.52  26  0  1   8  167  106  46  37.6  0.165  43  1  1
 7  184   84  33  35.5  0.355  41  1  0   1   96   64  27  33.2  0.289  21  0  0
10  129   76  28  35.9   0.28  39  0  1   6   92   62  32    32  0.085  46  0  0
 6  109   60  27    25  0.206  27  0  1   5  139   80  35  31.6  0.361  25  1  0
 6  134   70  23  35.4  0.542  29  1  0   3  106   54  21  30.9  0.292  24  0  1
 0  131   66  40  34.3  0.196  22  1  1   0  135   94  46  40.6  0.284  26  0  1
 5  158   84  41  39.4  0.395  29  1  0   3  112   74  30  31.6  0.197  25  1  0
 8  181   68  36  30.1  0.615  60  1  1   2  121   70  32  39.1  0.886  23  0  1
 1  168   88  29    35  0.905  52  1  0   1  144   82  46  46.1  0.335  46  1  1
 2  101   58  17  24.2  0.614  23  0  1   2   96   68  13  21.1  0.647  26  0  0
 3  107   62  13  22.9  0.678  23  1  1  12  121   78  17  26.5  0.259  62  0  0
 2  100   64  23  29.7  0.368  21  0  1   4  154   72  29  31.3  0.338  37  0  0
 6  125   78  31  27.6  0.565  49  1  1  10  125   70  26  31.1  0.205  41  1  0
 2  122   76  27  35.9  0.483  26  0  0   2  114   68  22  28.7  0.092  25  0  1
 1  115   70  30  34.6  0.529  32  1  0   7  114   76  17  23.8  0.466  31  0  0
 2  115   64  22  30.8  0.421  21  0  0   1  130   60  23  28.6  0.692  21  0  1
 1   79   75  30    32  0.396  22  0  1   4  112   78  40  39.4  0.236  38  0  1
 7  150   78  29  35.2  0.692  54  1  0   1   91   54  25  25.2  0.234  23  0  0
 1  100   72  12  25.3  0.658  28  0  0  12  140   82  43  39.2  0.528  58  1  0
 4  110   76  20  28.4  0.118  27  0  0   2   94   76  18  31.6  0.649  23  0  1
 2   84   50  23  30.4  0.968  21  0  1  10  148   84  48  37.6  1.001  51  1  1
 3   61   82  28  34.4  0.243  46  0  1   4  117   62  12  29.7   0.38  30  1  0
 3   99   80  11  19.3  0.284  30  0  0   3   80   82  31  34.2  1.292  27  1  0
 4  154   62  31  32.8  0.237  23  0  1   6  103   72  32  37.7  0.324  55  0  1
 6  111   64  39  34.2   0.26  24  0  1   0  124   70  20  27.4  0.254  36  1  0
 1  143   74  22  26.2  0.256  21  0  0   1   81   74  41  46.3  1.096  32  0  0
 4  189  110  31  28.5   0.68  37  0  1   4  116   72  12  22.1  0.463  37  0  1
 7  103   66  32  39.1  0.344  31  1  1   8  124   76  24  28.7  0.687  52  1  1
 1   71   78  50  33.2  0.422  21  0  1   0  137   84  27  27.3  0.231  59  0  1
 9  112   82  32  34.2   0.26  36  1  1   4  148   60  27  30.9   0.15  29  1  0
 1  136   74  50  37.4  0.399  24  0  1   9  145   80  46  37.9  0.637  40  1  1
 1   93   56  11  22.5  0.417  22  0  0   1  107   72  30  30.8  0.821  24  0  1
12  151   70  40  41.8  0.742  38  1  1   1   97   70  40  38.1  0.218  30  0  1
 5  144   82  26    32  0.452  58  1  1   2  112   86  42  38.4  0.246  28  0  1
 2   99   52  15  24.6  0.637  21  0  1   1  109   56  21  25.2  0.833  23  0  1
 1  120   80  48  38.9  1.162  41  0  1   7  187   68  39  37.7  0.254  41  1  0
 3  129   92  49  36.4  0.968  32  1  0   7  179   95  31  34.2  0.164  60  0  0
 6   80   66  30  26.2  0.313  41  0  0   2  105   58  40  34.9  0.225  25  0  0
 3  191   68  15  30.9  0.299  34  0  1   0   95   80  45  36.5   0.33  26  0  1
 4   99   72  17  25.6  0.294  28  0  0   0  137   68  14  24.8  0.143  21  0  1
 1   97   70  15  18.2  0.147  21  0  0   0  100   88  60  46.8  0.962  31  0  0
 1  167   74  17  23.4  0.447  33  1  0   0  180   90  26  36.5  0.314  35  1  1
 2  122   70  27  36.8   0.34  27  0  0   1   90   62  12  27.2   0.58  24  0  0
 3  120   70  30  42.9  0.452  30  0  0   6  154   78  41  46.1  0.571  27  0  0
 2   56   56  28  24.2  0.332  22  0  0   0  177   60  29  34.6  1.072  21  1  1
 3  124   80  33  33.2  0.305  26  0  0   8   85   55  20  24.4  0.136  42  0  1
12   88   74  40  35.3  0.378  48  0  1   9  152   78  34  34.2  0.893  33  1  1
 0  198   66  32  41.3  0.502  28  1  1   0  188   82  14    32  0.682  22  1  0
 5  139   64  35  28.6  0.411  26  0  1   7  168   88  42  38.2  0.787  40  1  1
 2  197   70  99  34.7  0.575  62  1  0   2  142   82  18  24.7  0.761  21  0  0
 8  126   74  38  25.9  0.162  39  0  1   3  158   76  36  31.6  0.851  28  1  1
 3  130   78  23  28.4  0.323  34  1  0   2  100   54  28  37.8  0.498  24  0  1
 1  164   82  43  32.8  0.341  50  0  1   4   95   60  32  35.4  0.284  28  0  1
 2  122   52  43  36.2  0.816  28  0  0   4   85   58  22  27.8  0.306  28  0  0
 0  151   90  46  42.1  0.371  21  1  1   6  144   72  27  33.9  0.255  40  0  1
 3  111   90  12  28.4  0.495  29  0  0   1  107   68  19  26.5  0.165  24  0  1
 6  115   60  39  33.7  0.245  40  1  0   5  105   72  29  36.9  0.159  28  0  0
 7  194   68  28  35.9  0.745  41  1  0   4  184   78  39    37  0.264  31  1  0
 0   95   85  25  37.4  0.247  24  1  0   7  124   70  33  25.5  0.161  37  0  1
 1  111   62  13    24  0.138  23  0  0   7  137   90  41    32  0.391  39  0  0
 9   57   80  37  32.8  0.096  41  0  1   2  157   74  35  39.4  0.134  30  0  1
 2   95   54  14  26.1  0.748  22  0  0  12  140   85  33  37.4  0.244  41  0  0
 0  117   66  31  30.8  0.493  22  0  0   8  100   74  40  39.4  0.661  43  1  1
 9  123   70  44  33.1  0.374  40  0  0   0  138   60  35  34.6  0.534  21  1  1
14  100   78  25  36.6  0.412  46  1  0  14  175   62  30  33.6  0.212  38  1  0
 0   74   52  10  27.8  0.269  22  0  0   1  133  102  28  32.8  0.234  45  1  0
 0  119   64  18  34.9  0.725  23  0  1   5  155   84  44  38.7  0.619  34  0  1
 1  128   48  45  40.5  0.613  24  1  1   2  112   68  22  34.1  0.315  26  0  1
 1  140   74  26  24.1  0.828  23  0  1   2  141   58  34  25.4  0.699  24  0  0
 7  129   68  49  38.5  0.439  43  1  1   0  106   70  37  39.4  0.605  22  0  0
 1  118   58  36  33.3  0.261  23  0  1   8  155   62  26    34  0.543  46  1  0
;


/*
In the following program, the PARTITION statement divides the data
into two parts.  The training data have Role=0 and holds about 59\%
of the data; the rest of the data is used evaluate the fit.  A
stepwise selection method selects the best model based on the
training observations.
*/

proc hplogistic data=Pima;
   model Diabetes(event='1') = NPreg Glucose Pressure Triceps BMI Pedigree Age;
   partition role=Role(train='0' test='1');
   selection method=stepwise;
run;


/*
The following program displays the Partition Fit Statistics table
without partitioning your data set by identifying all of your data
as training data.
*/

data Pima;
   set Pima;
   Role=0;
run;
proc hplogistic data=Pima;
   model Diabetes(event='1') = NPreg Glucose Pressure Triceps BMI Pedigree Age;
   partition role=Role(train='0');
run;