Select Your Region
Americas
Europe
Middle East & Africa
Asia Pacific
/****************************************************************/ /* S A S S A M P L E L I B R A R Y */ /* */ /* NAME: MIXEX7 */ /* TITLE: Documentation Example 7 for PROC MIXED */ /* Influence in Heterogeneous Variance Model */ /* PRODUCT: STAT */ /* SYSTEM: ALL */ /* KEYS: Mixed Linear Models ODS Graphics */ /* PROCS: MIXED, PRINT */ /* DATA: */ /* */ /* SUPPORT: Tianlin Wang */ /* REF: */ /* MISC: Influence diagnostics */ /* */ /****************************************************************/ *---Influence in Heterogeneous Variance Model (Experimental)---* | A one-way classification model with heterogeneous | | variances is fit. Data from Snedecor and Cochran (1976) | *--------------------------------------------------------------*; data absorb; input FatType Absorbed @@; datalines; 1 164 1 172 1 168 1 177 1 156 1 195 2 178 2 191 2 197 2 182 2 185 2 177 3 175 3 193 3 178 3 171 3 163 3 176 4 155 4 166 4 149 4 164 4 170 4 168 ; ods graphics on; proc mixed data=absorb asycov; class FatType; model Absorbed = FatType / s influence(iter=10 estimates); repeated / group=FatType; ods output Influence=inf; run; ods graphics off; proc print data=inf label; var parm1-parm5 covp1-covp4; run; proc print data=inf label; var observed predicted residual pressres student Rstudent; run; proc print data=inf label; var leverage observed CookD DFFITS CovRatio RLD; run; proc print data=inf label; var iter CookDCP CovRatioCP; run;